Normalized defining polynomial
\( x^{32} - 2 x^{31} - 23 x^{30} + 42 x^{29} + 346 x^{28} - 572 x^{27} - 3527 x^{26} + 4836 x^{25} + \cdots + 256 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(2553263220825544945190771147906377486172160000000000000000\) \(\medspace = 2^{48}\cdot 3^{16}\cdot 5^{16}\cdot 29^{8}\cdot 1289^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(62.23\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{3/2}3^{1/2}5^{1/2}29^{1/2}1289^{1/2}\approx 2117.9518408122503$ | ||
Ramified primes: | \(2\), \(3\), \(5\), \(29\), \(1289\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{32768}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{16}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{17}-\frac{1}{2}a^{13}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{5}-\frac{1}{2}a^{3}$, $\frac{1}{8}a^{20}-\frac{1}{4}a^{19}-\frac{1}{8}a^{18}-\frac{1}{4}a^{17}-\frac{1}{2}a^{16}+\frac{1}{8}a^{14}-\frac{1}{2}a^{13}+\frac{3}{8}a^{12}-\frac{1}{8}a^{10}-\frac{1}{4}a^{8}+\frac{1}{4}a^{7}-\frac{1}{8}a^{6}+\frac{1}{4}a^{5}-\frac{1}{8}a^{4}-\frac{1}{4}a^{2}-\frac{1}{2}$, $\frac{1}{8}a^{21}-\frac{1}{8}a^{19}-\frac{1}{2}a^{17}-\frac{1}{2}a^{16}+\frac{1}{8}a^{15}-\frac{1}{4}a^{14}-\frac{1}{8}a^{13}+\frac{1}{4}a^{12}+\frac{3}{8}a^{11}+\frac{1}{4}a^{10}+\frac{1}{4}a^{9}+\frac{1}{4}a^{8}+\frac{3}{8}a^{7}-\frac{1}{8}a^{5}+\frac{1}{4}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{16}a^{22}-\frac{1}{16}a^{20}-\frac{1}{4}a^{19}-\frac{1}{4}a^{18}-\frac{7}{16}a^{16}+\frac{3}{8}a^{15}-\frac{1}{16}a^{14}-\frac{1}{8}a^{13}-\frac{5}{16}a^{12}+\frac{3}{8}a^{11}+\frac{1}{8}a^{10}-\frac{1}{8}a^{9}+\frac{3}{16}a^{8}+\frac{7}{16}a^{6}-\frac{1}{8}a^{5}+\frac{1}{8}a^{4}+\frac{1}{4}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{16}a^{23}-\frac{1}{16}a^{21}-\frac{1}{4}a^{19}-\frac{1}{4}a^{18}-\frac{7}{16}a^{17}+\frac{3}{8}a^{16}-\frac{1}{16}a^{15}+\frac{1}{8}a^{14}+\frac{3}{16}a^{13}+\frac{1}{8}a^{12}-\frac{3}{8}a^{11}-\frac{3}{8}a^{10}-\frac{5}{16}a^{9}-\frac{1}{2}a^{8}-\frac{1}{16}a^{7}-\frac{3}{8}a^{6}+\frac{1}{8}a^{5}-\frac{1}{4}a^{3}$, $\frac{1}{64}a^{24}-\frac{1}{32}a^{23}+\frac{1}{64}a^{22}+\frac{1}{32}a^{21}-\frac{1}{32}a^{20}-\frac{3}{16}a^{19}-\frac{11}{64}a^{18}-\frac{1}{16}a^{17}-\frac{27}{64}a^{16}+\frac{1}{4}a^{15}-\frac{31}{64}a^{14}+\frac{3}{8}a^{13}-\frac{3}{8}a^{12}+\frac{9}{32}a^{11}+\frac{23}{64}a^{10}-\frac{9}{32}a^{9}-\frac{19}{64}a^{8}+\frac{5}{16}a^{7}-\frac{3}{8}a^{6}+\frac{1}{4}a^{5}-\frac{5}{16}a^{4}+\frac{1}{4}a^{3}-\frac{1}{2}a+\frac{1}{4}$, $\frac{1}{64}a^{25}+\frac{1}{64}a^{23}-\frac{1}{32}a^{21}-\frac{1}{16}a^{20}+\frac{13}{64}a^{19}-\frac{1}{32}a^{18}-\frac{15}{64}a^{17}+\frac{7}{32}a^{16}-\frac{27}{64}a^{15}-\frac{9}{32}a^{14}+\frac{3}{16}a^{13}-\frac{5}{32}a^{12}+\frac{11}{64}a^{11}+\frac{5}{16}a^{10}-\frac{3}{64}a^{9}+\frac{9}{32}a^{8}+\frac{7}{16}a^{7}-\frac{7}{16}a^{6}-\frac{5}{16}a^{5}-\frac{1}{8}a^{4}-\frac{1}{2}a^{2}-\frac{1}{4}a$, $\frac{1}{128}a^{26}-\frac{1}{128}a^{24}-\frac{1}{32}a^{22}+\frac{1}{32}a^{21}+\frac{1}{128}a^{20}+\frac{15}{64}a^{19}+\frac{7}{128}a^{18}-\frac{23}{64}a^{17}-\frac{61}{128}a^{16}-\frac{19}{64}a^{15}+\frac{17}{64}a^{14}+\frac{9}{64}a^{13}+\frac{51}{128}a^{12}-\frac{1}{2}a^{11}+\frac{39}{128}a^{10}+\frac{29}{64}a^{9}-\frac{7}{64}a^{8}+\frac{7}{16}a^{7}+\frac{1}{32}a^{6}-\frac{7}{16}a^{5}-\frac{3}{16}a^{4}+\frac{3}{8}a^{2}-\frac{1}{4}a+\frac{1}{4}$, $\frac{1}{128}a^{27}-\frac{1}{128}a^{25}-\frac{1}{32}a^{23}-\frac{1}{32}a^{22}+\frac{1}{128}a^{21}+\frac{3}{64}a^{20}-\frac{25}{128}a^{19}+\frac{9}{64}a^{18}+\frac{3}{128}a^{17}+\frac{9}{64}a^{16}-\frac{7}{64}a^{15}-\frac{3}{64}a^{14}-\frac{61}{128}a^{13}+\frac{1}{16}a^{12}-\frac{9}{128}a^{11}-\frac{27}{64}a^{10}+\frac{1}{64}a^{9}-\frac{1}{4}a^{8}-\frac{15}{32}a^{7}+\frac{3}{8}a^{6}+\frac{7}{16}a^{5}+\frac{1}{8}a^{4}+\frac{1}{8}a^{3}-\frac{1}{4}a$, $\frac{1}{512}a^{28}-\frac{1}{256}a^{27}-\frac{1}{512}a^{26}-\frac{1}{256}a^{25}-\frac{3}{512}a^{22}+\frac{3}{128}a^{21}+\frac{19}{512}a^{20}-\frac{69}{512}a^{18}-\frac{1}{2}a^{17}+\frac{101}{256}a^{16}+\frac{109}{256}a^{15}-\frac{37}{512}a^{14}-\frac{107}{256}a^{13}-\frac{145}{512}a^{12}+\frac{21}{64}a^{11}-\frac{59}{256}a^{10}-\frac{21}{64}a^{9}+\frac{3}{8}a^{8}-\frac{1}{8}a^{7}-\frac{11}{64}a^{6}-\frac{5}{16}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{16}a^{2}+\frac{1}{8}$, $\frac{1}{512}a^{29}-\frac{1}{512}a^{27}-\frac{1}{128}a^{24}-\frac{11}{512}a^{23}+\frac{3}{256}a^{22}-\frac{17}{512}a^{21}+\frac{1}{256}a^{20}-\frac{9}{512}a^{19}+\frac{37}{256}a^{18}+\frac{83}{256}a^{17}+\frac{41}{256}a^{16}+\frac{103}{512}a^{15}-\frac{7}{16}a^{14}-\frac{137}{512}a^{13}-\frac{127}{256}a^{12}+\frac{7}{256}a^{11}+\frac{9}{32}a^{10}-\frac{15}{64}a^{9}+\frac{31}{64}a^{8}-\frac{25}{64}a^{7}-\frac{1}{4}a^{6}-\frac{7}{16}a^{5}+\frac{3}{16}a^{4}+\frac{1}{16}a^{3}+\frac{3}{8}a-\frac{1}{2}$, $\frac{1}{20\!\cdots\!44}a^{30}-\frac{90\!\cdots\!71}{10\!\cdots\!72}a^{29}-\frac{319997152852885}{15\!\cdots\!88}a^{28}-\frac{33\!\cdots\!27}{10\!\cdots\!72}a^{27}+\frac{33\!\cdots\!55}{12\!\cdots\!84}a^{26}+\frac{11\!\cdots\!35}{25\!\cdots\!68}a^{25}-\frac{12\!\cdots\!03}{20\!\cdots\!44}a^{24}+\frac{36\!\cdots\!25}{25\!\cdots\!68}a^{23}+\frac{44\!\cdots\!31}{20\!\cdots\!44}a^{22}+\frac{22\!\cdots\!87}{51\!\cdots\!36}a^{21}-\frac{24\!\cdots\!13}{20\!\cdots\!44}a^{20}+\frac{47\!\cdots\!83}{51\!\cdots\!36}a^{19}+\frac{25\!\cdots\!21}{10\!\cdots\!72}a^{18}+\frac{22\!\cdots\!05}{10\!\cdots\!72}a^{17}-\frac{63\!\cdots\!17}{15\!\cdots\!88}a^{16}-\frac{22\!\cdots\!21}{10\!\cdots\!72}a^{15}-\frac{75\!\cdots\!57}{20\!\cdots\!44}a^{14}-\frac{45\!\cdots\!39}{51\!\cdots\!36}a^{13}+\frac{23\!\cdots\!25}{10\!\cdots\!72}a^{12}-\frac{92\!\cdots\!61}{25\!\cdots\!68}a^{11}+\frac{29\!\cdots\!05}{99\!\cdots\!68}a^{10}-\frac{11\!\cdots\!05}{12\!\cdots\!84}a^{9}+\frac{12\!\cdots\!01}{25\!\cdots\!68}a^{8}+\frac{66\!\cdots\!57}{64\!\cdots\!92}a^{7}-\frac{70\!\cdots\!77}{16\!\cdots\!48}a^{6}-\frac{12\!\cdots\!65}{32\!\cdots\!96}a^{5}-\frac{23\!\cdots\!53}{64\!\cdots\!92}a^{4}+\frac{95\!\cdots\!61}{80\!\cdots\!24}a^{3}+\frac{13\!\cdots\!05}{32\!\cdots\!96}a^{2}-\frac{92\!\cdots\!57}{40\!\cdots\!62}a+\frac{14\!\cdots\!33}{40\!\cdots\!62}$, $\frac{1}{15\!\cdots\!64}a^{31}-\frac{36\!\cdots\!19}{15\!\cdots\!64}a^{30}-\frac{16\!\cdots\!63}{15\!\cdots\!64}a^{29}+\frac{28\!\cdots\!55}{15\!\cdots\!64}a^{28}-\frac{87\!\cdots\!39}{79\!\cdots\!32}a^{27}+\frac{82\!\cdots\!93}{39\!\cdots\!16}a^{26}+\frac{30\!\cdots\!71}{68\!\cdots\!68}a^{25}+\frac{10\!\cdots\!19}{15\!\cdots\!64}a^{24}+\frac{17\!\cdots\!59}{15\!\cdots\!64}a^{23}+\frac{13\!\cdots\!77}{15\!\cdots\!64}a^{22}+\frac{81\!\cdots\!51}{15\!\cdots\!64}a^{21}-\frac{53\!\cdots\!59}{15\!\cdots\!64}a^{20}-\frac{17\!\cdots\!67}{79\!\cdots\!32}a^{19}-\frac{32\!\cdots\!69}{30\!\cdots\!32}a^{18}+\frac{76\!\cdots\!13}{15\!\cdots\!64}a^{17}-\frac{50\!\cdots\!61}{15\!\cdots\!64}a^{16}+\frac{57\!\cdots\!61}{15\!\cdots\!64}a^{15}-\frac{53\!\cdots\!95}{15\!\cdots\!64}a^{14}+\frac{24\!\cdots\!09}{79\!\cdots\!32}a^{13}+\frac{13\!\cdots\!89}{79\!\cdots\!32}a^{12}-\frac{46\!\cdots\!49}{19\!\cdots\!08}a^{11}+\frac{32\!\cdots\!53}{90\!\cdots\!64}a^{10}+\frac{54\!\cdots\!71}{19\!\cdots\!08}a^{9}-\frac{36\!\cdots\!89}{19\!\cdots\!08}a^{8}+\frac{23\!\cdots\!63}{49\!\cdots\!52}a^{7}-\frac{14\!\cdots\!89}{24\!\cdots\!76}a^{6}+\frac{19\!\cdots\!05}{49\!\cdots\!52}a^{5}+\frac{20\!\cdots\!45}{49\!\cdots\!52}a^{4}-\frac{97\!\cdots\!95}{24\!\cdots\!76}a^{3}+\frac{13\!\cdots\!25}{17\!\cdots\!32}a^{2}+\frac{21\!\cdots\!05}{61\!\cdots\!44}a-\frac{15\!\cdots\!97}{61\!\cdots\!44}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{3}\times C_{180}$, which has order $540$ (assuming GRH)
Relative class number: $540$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( -\frac{392215148963077430293218014598260741236631067427855494416927963333719}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{31} + \frac{806309184972983051156893730851855079395695470364887687906568705903499}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{30} + \frac{8995630426937700870721385478043152926550675062458259397700227314159887}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{29} - \frac{17010659204247956140949434022969992055945389109089908602186101370331297}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{28} - \frac{16902310055523777834214210819415603393178540806194207577328262695717145}{61412236032924730959224074328136795761755803860850354401513319049194248} a^{27} + \frac{116319194760554793858830198623879117402924439329780043956923182814520489}{245648944131698923836896297312547183047023215443401417606053276196776992} a^{26} + \frac{59885057768607366924935771427433838151430647859607305862429767323937799}{21360777750582515116251851940221494178002018734208818922265502277980608} a^{25} - \frac{1983687395588064261174508966158137684290140832713371706776117387630653591}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{24} - \frac{11190042692182861353696908351866365251395891997779161384134597905294120047}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{23} + \frac{13261878120268662238566289857492036153366224808540235109926423080154587301}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{22} + \frac{68444503396103473846924163437096661593907279102324111741203918067346119905}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{21} - \frac{61618085250755147159069341395404802794079525481897160820332973779279384907}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{20} - \frac{10413063523105932058890152164058977329330534629627163728236348281486438019}{15353059008231182739806018582034198940438950965212588600378329762298562} a^{19} + \frac{134840343317672858637733395737249730149031913801950014829497871173489125267}{245648944131698923836896297312547183047023215443401417606053276196776992} a^{18} + \frac{1024840903169294985115112845610787302928366024213466640214031550706124258985}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{17} - \frac{820161358375794433638144674171845428999695187213481621888137831426131190475}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{16} - \frac{1466114407428256779560581445515497569548471783354091035480211779451458481541}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{15} + \frac{2895518023001398654990155348057722720706440433126021941202600531364653969073}{491297888263397847673792594625094366094046430886802835212106552393553984} a^{14} - \frac{1632761827451974442799696610986858866066295322635215060575190516837912909057}{122824472065849461918448148656273591523511607721700708803026638098388496} a^{13} + \frac{348217345953485095868649548295469505228700591215693364553179239130166763207}{30706118016462365479612037164068397880877901930425177200756659524597124} a^{12} - \frac{1005721448871946587760480975724450254309222371988684697426215415846733231919}{122824472065849461918448148656273591523511607721700708803026638098388496} a^{11} + \frac{3244112150721162132951240660622761243759493094754011429577082400489191953}{697866318555962851809364481001554497292679589327844936380833171013571} a^{10} - \frac{568196691771883456354659571145530260737452824398350293947656148633417186653}{61412236032924730959224074328136795761755803860850354401513319049194248} a^{9} - \frac{34688106467976640480527302268370555949088421222429107108564970685694942203}{122824472065849461918448148656273591523511607721700708803026638098388496} a^{8} - \frac{116523966552412283972476130805889920092667031252059349798917071129899205547}{30706118016462365479612037164068397880877901930425177200756659524597124} a^{7} + \frac{4260656024269540098819950905064188849131814759059289227346432234604408114}{7676529504115591369903009291017099470219475482606294300189164881149281} a^{6} - \frac{11243828853644379673662740168450592136739872464187886021028872202299972867}{15353059008231182739806018582034198940438950965212588600378329762298562} a^{5} + \frac{38315060586948932007455497129320301964259363975643557113149789150327156}{7676529504115591369903009291017099470219475482606294300189164881149281} a^{4} - \frac{467428572152882188474899548783294015457395594026245425860489702529879638}{7676529504115591369903009291017099470219475482606294300189164881149281} a^{3} + \frac{4653118737273182232555398263543311000188795053024712082600284731953709}{697866318555962851809364481001554497292679589327844936380833171013571} a^{2} - \frac{33045986915989641209445172407478390230712656301616439529329545631530950}{7676529504115591369903009291017099470219475482606294300189164881149281} a + \frac{4476001683976034340844137835922701834978421744803730399368204008952981}{7676529504115591369903009291017099470219475482606294300189164881149281} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{56\!\cdots\!41}{89\!\cdots\!28}a^{31}-\frac{25\!\cdots\!45}{17\!\cdots\!56}a^{30}-\frac{63\!\cdots\!11}{44\!\cdots\!64}a^{29}+\frac{53\!\cdots\!63}{17\!\cdots\!56}a^{28}+\frac{19\!\cdots\!85}{89\!\cdots\!28}a^{27}-\frac{36\!\cdots\!57}{89\!\cdots\!28}a^{26}-\frac{83\!\cdots\!07}{39\!\cdots\!36}a^{25}+\frac{63\!\cdots\!63}{17\!\cdots\!56}a^{24}+\frac{15\!\cdots\!63}{89\!\cdots\!28}a^{23}-\frac{43\!\cdots\!29}{17\!\cdots\!56}a^{22}-\frac{95\!\cdots\!67}{89\!\cdots\!28}a^{21}+\frac{20\!\cdots\!63}{17\!\cdots\!56}a^{20}+\frac{11\!\cdots\!91}{22\!\cdots\!32}a^{19}-\frac{11\!\cdots\!29}{22\!\cdots\!32}a^{18}-\frac{70\!\cdots\!89}{44\!\cdots\!64}a^{17}+\frac{28\!\cdots\!69}{17\!\cdots\!56}a^{16}+\frac{95\!\cdots\!61}{44\!\cdots\!64}a^{15}-\frac{69\!\cdots\!65}{13\!\cdots\!12}a^{14}+\frac{38\!\cdots\!57}{34\!\cdots\!28}a^{13}-\frac{47\!\cdots\!29}{44\!\cdots\!64}a^{12}+\frac{17\!\cdots\!71}{22\!\cdots\!32}a^{11}-\frac{19\!\cdots\!93}{40\!\cdots\!24}a^{10}+\frac{55\!\cdots\!57}{70\!\cdots\!76}a^{9}-\frac{21\!\cdots\!47}{22\!\cdots\!32}a^{8}+\frac{16\!\cdots\!55}{56\!\cdots\!08}a^{7}-\frac{96\!\cdots\!95}{11\!\cdots\!16}a^{6}+\frac{37\!\cdots\!03}{54\!\cdots\!52}a^{5}-\frac{47\!\cdots\!93}{56\!\cdots\!08}a^{4}+\frac{78\!\cdots\!57}{14\!\cdots\!52}a^{3}-\frac{11\!\cdots\!71}{12\!\cdots\!32}a^{2}+\frac{51\!\cdots\!83}{70\!\cdots\!76}a-\frac{92\!\cdots\!77}{14\!\cdots\!52}$, $\frac{45\!\cdots\!31}{19\!\cdots\!08}a^{31}-\frac{32\!\cdots\!01}{79\!\cdots\!32}a^{30}-\frac{21\!\cdots\!15}{39\!\cdots\!16}a^{29}+\frac{67\!\cdots\!55}{79\!\cdots\!32}a^{28}+\frac{32\!\cdots\!89}{39\!\cdots\!16}a^{27}-\frac{45\!\cdots\!23}{39\!\cdots\!16}a^{26}-\frac{18\!\cdots\!25}{21\!\cdots\!24}a^{25}+\frac{73\!\cdots\!75}{79\!\cdots\!32}a^{24}+\frac{13\!\cdots\!81}{19\!\cdots\!08}a^{23}-\frac{46\!\cdots\!37}{79\!\cdots\!32}a^{22}-\frac{31\!\cdots\!51}{76\!\cdots\!08}a^{21}+\frac{19\!\cdots\!71}{79\!\cdots\!32}a^{20}+\frac{30\!\cdots\!97}{15\!\cdots\!16}a^{19}-\frac{15\!\cdots\!51}{15\!\cdots\!61}a^{18}-\frac{24\!\cdots\!51}{39\!\cdots\!16}a^{17}+\frac{23\!\cdots\!89}{79\!\cdots\!32}a^{16}+\frac{36\!\cdots\!25}{39\!\cdots\!16}a^{15}-\frac{11\!\cdots\!53}{79\!\cdots\!32}a^{14}+\frac{34\!\cdots\!41}{99\!\cdots\!04}a^{13}-\frac{92\!\cdots\!79}{38\!\cdots\!04}a^{12}+\frac{18\!\cdots\!37}{99\!\cdots\!04}a^{11}-\frac{58\!\cdots\!71}{56\!\cdots\!04}a^{10}+\frac{48\!\cdots\!79}{19\!\cdots\!52}a^{9}+\frac{17\!\cdots\!15}{24\!\cdots\!76}a^{8}+\frac{35\!\cdots\!29}{24\!\cdots\!76}a^{7}+\frac{57\!\cdots\!87}{30\!\cdots\!22}a^{6}+\frac{90\!\cdots\!67}{30\!\cdots\!22}a^{5}+\frac{64\!\cdots\!13}{11\!\cdots\!97}a^{4}+\frac{66\!\cdots\!54}{15\!\cdots\!61}a^{3}+\frac{79\!\cdots\!65}{11\!\cdots\!08}a^{2}+\frac{56\!\cdots\!38}{15\!\cdots\!61}a+\frac{15\!\cdots\!57}{30\!\cdots\!22}$, $\frac{27\!\cdots\!43}{79\!\cdots\!32}a^{31}-\frac{60\!\cdots\!63}{79\!\cdots\!32}a^{30}-\frac{30\!\cdots\!31}{39\!\cdots\!16}a^{29}+\frac{12\!\cdots\!71}{79\!\cdots\!32}a^{28}+\frac{91\!\cdots\!43}{79\!\cdots\!32}a^{27}-\frac{44\!\cdots\!93}{19\!\cdots\!08}a^{26}-\frac{40\!\cdots\!59}{34\!\cdots\!84}a^{25}+\frac{15\!\cdots\!75}{79\!\cdots\!32}a^{24}+\frac{18\!\cdots\!51}{19\!\cdots\!08}a^{23}-\frac{10\!\cdots\!49}{79\!\cdots\!32}a^{22}-\frac{22\!\cdots\!47}{39\!\cdots\!16}a^{21}+\frac{51\!\cdots\!27}{79\!\cdots\!32}a^{20}+\frac{22\!\cdots\!43}{79\!\cdots\!32}a^{19}-\frac{11\!\cdots\!21}{39\!\cdots\!16}a^{18}-\frac{67\!\cdots\!87}{79\!\cdots\!32}a^{17}+\frac{70\!\cdots\!57}{79\!\cdots\!32}a^{16}+\frac{11\!\cdots\!25}{99\!\cdots\!04}a^{15}-\frac{16\!\cdots\!43}{60\!\cdots\!64}a^{14}+\frac{37\!\cdots\!35}{60\!\cdots\!64}a^{13}-\frac{57\!\cdots\!41}{99\!\cdots\!04}a^{12}+\frac{16\!\cdots\!43}{39\!\cdots\!16}a^{11}-\frac{44\!\cdots\!51}{18\!\cdots\!28}a^{10}+\frac{41\!\cdots\!77}{99\!\cdots\!04}a^{9}-\frac{13\!\cdots\!61}{24\!\cdots\!76}a^{8}+\frac{15\!\cdots\!47}{99\!\cdots\!04}a^{7}-\frac{23\!\cdots\!69}{49\!\cdots\!52}a^{6}+\frac{71\!\cdots\!23}{19\!\cdots\!52}a^{5}-\frac{62\!\cdots\!85}{12\!\cdots\!88}a^{4}+\frac{74\!\cdots\!31}{24\!\cdots\!76}a^{3}-\frac{28\!\cdots\!15}{56\!\cdots\!04}a^{2}+\frac{50\!\cdots\!39}{12\!\cdots\!88}a-\frac{55\!\cdots\!32}{15\!\cdots\!61}$, $\frac{35\!\cdots\!71}{15\!\cdots\!64}a^{31}-\frac{40\!\cdots\!27}{79\!\cdots\!32}a^{30}-\frac{79\!\cdots\!71}{15\!\cdots\!64}a^{29}+\frac{43\!\cdots\!71}{39\!\cdots\!16}a^{28}+\frac{29\!\cdots\!91}{39\!\cdots\!16}a^{27}-\frac{12\!\cdots\!77}{79\!\cdots\!32}a^{26}-\frac{51\!\cdots\!19}{68\!\cdots\!68}a^{25}+\frac{40\!\cdots\!47}{30\!\cdots\!32}a^{24}+\frac{96\!\cdots\!33}{15\!\cdots\!64}a^{23}-\frac{71\!\cdots\!11}{79\!\cdots\!32}a^{22}-\frac{58\!\cdots\!51}{15\!\cdots\!64}a^{21}+\frac{35\!\cdots\!47}{79\!\cdots\!32}a^{20}+\frac{14\!\cdots\!51}{79\!\cdots\!32}a^{19}-\frac{78\!\cdots\!81}{39\!\cdots\!16}a^{18}-\frac{84\!\cdots\!67}{15\!\cdots\!64}a^{17}+\frac{47\!\cdots\!37}{79\!\cdots\!32}a^{16}+\frac{10\!\cdots\!09}{15\!\cdots\!64}a^{15}-\frac{14\!\cdots\!57}{79\!\cdots\!32}a^{14}+\frac{33\!\cdots\!85}{79\!\cdots\!32}a^{13}-\frac{33\!\cdots\!13}{79\!\cdots\!32}a^{12}+\frac{66\!\cdots\!81}{19\!\cdots\!08}a^{11}-\frac{77\!\cdots\!21}{36\!\cdots\!56}a^{10}+\frac{61\!\cdots\!35}{19\!\cdots\!08}a^{9}-\frac{32\!\cdots\!41}{49\!\cdots\!52}a^{8}+\frac{60\!\cdots\!81}{49\!\cdots\!52}a^{7}-\frac{44\!\cdots\!23}{99\!\cdots\!04}a^{6}+\frac{13\!\cdots\!61}{49\!\cdots\!52}a^{5}-\frac{51\!\cdots\!25}{61\!\cdots\!44}a^{4}+\frac{52\!\cdots\!05}{24\!\cdots\!76}a^{3}-\frac{11\!\cdots\!67}{22\!\cdots\!16}a^{2}+\frac{34\!\cdots\!53}{61\!\cdots\!44}a-\frac{34\!\cdots\!67}{12\!\cdots\!88}$, $\frac{41\!\cdots\!75}{15\!\cdots\!64}a^{31}-\frac{17\!\cdots\!37}{30\!\cdots\!32}a^{30}-\frac{93\!\cdots\!19}{15\!\cdots\!64}a^{29}+\frac{94\!\cdots\!11}{79\!\cdots\!32}a^{28}+\frac{26\!\cdots\!59}{30\!\cdots\!32}a^{27}-\frac{10\!\cdots\!03}{60\!\cdots\!64}a^{26}-\frac{61\!\cdots\!11}{68\!\cdots\!68}a^{25}+\frac{11\!\cdots\!51}{79\!\cdots\!32}a^{24}+\frac{88\!\cdots\!81}{12\!\cdots\!28}a^{23}-\frac{38\!\cdots\!65}{39\!\cdots\!16}a^{22}-\frac{70\!\cdots\!51}{15\!\cdots\!64}a^{21}+\frac{91\!\cdots\!79}{19\!\cdots\!08}a^{20}+\frac{17\!\cdots\!13}{79\!\cdots\!32}a^{19}-\frac{81\!\cdots\!15}{39\!\cdots\!16}a^{18}-\frac{10\!\cdots\!47}{15\!\cdots\!64}a^{17}+\frac{61\!\cdots\!39}{99\!\cdots\!04}a^{16}+\frac{14\!\cdots\!17}{15\!\cdots\!64}a^{15}-\frac{40\!\cdots\!53}{19\!\cdots\!08}a^{14}+\frac{36\!\cdots\!59}{79\!\cdots\!32}a^{13}-\frac{33\!\cdots\!29}{79\!\cdots\!32}a^{12}+\frac{19\!\cdots\!01}{61\!\cdots\!44}a^{11}-\frac{64\!\cdots\!85}{36\!\cdots\!56}a^{10}+\frac{62\!\cdots\!43}{19\!\cdots\!08}a^{9}-\frac{21\!\cdots\!55}{99\!\cdots\!04}a^{8}+\frac{74\!\cdots\!09}{61\!\cdots\!44}a^{7}-\frac{28\!\cdots\!75}{99\!\cdots\!04}a^{6}+\frac{12\!\cdots\!33}{49\!\cdots\!52}a^{5}-\frac{40\!\cdots\!95}{24\!\cdots\!76}a^{4}+\frac{26\!\cdots\!67}{19\!\cdots\!52}a^{3}+\frac{35\!\cdots\!31}{22\!\cdots\!16}a^{2}+\frac{11\!\cdots\!17}{15\!\cdots\!61}a+\frac{25\!\cdots\!39}{12\!\cdots\!88}$, $\frac{73\!\cdots\!03}{15\!\cdots\!64}a^{31}-\frac{45\!\cdots\!47}{39\!\cdots\!16}a^{30}-\frac{16\!\cdots\!87}{15\!\cdots\!64}a^{29}+\frac{19\!\cdots\!83}{79\!\cdots\!32}a^{28}+\frac{14\!\cdots\!01}{99\!\cdots\!04}a^{27}-\frac{27\!\cdots\!99}{79\!\cdots\!32}a^{26}-\frac{10\!\cdots\!47}{68\!\cdots\!68}a^{25}+\frac{23\!\cdots\!07}{79\!\cdots\!32}a^{24}+\frac{19\!\cdots\!49}{15\!\cdots\!64}a^{23}-\frac{84\!\cdots\!31}{39\!\cdots\!16}a^{22}-\frac{11\!\cdots\!07}{15\!\cdots\!64}a^{21}+\frac{10\!\cdots\!55}{99\!\cdots\!04}a^{20}+\frac{27\!\cdots\!99}{79\!\cdots\!32}a^{19}-\frac{19\!\cdots\!47}{39\!\cdots\!16}a^{18}-\frac{16\!\cdots\!71}{15\!\cdots\!64}a^{17}+\frac{14\!\cdots\!05}{99\!\cdots\!04}a^{16}+\frac{18\!\cdots\!01}{15\!\cdots\!64}a^{15}-\frac{80\!\cdots\!91}{19\!\cdots\!08}a^{14}+\frac{74\!\cdots\!41}{79\!\cdots\!32}a^{13}-\frac{81\!\cdots\!25}{79\!\cdots\!32}a^{12}+\frac{16\!\cdots\!55}{19\!\cdots\!08}a^{11}-\frac{19\!\cdots\!89}{36\!\cdots\!56}a^{10}+\frac{13\!\cdots\!39}{19\!\cdots\!08}a^{9}-\frac{18\!\cdots\!75}{76\!\cdots\!08}a^{8}+\frac{12\!\cdots\!31}{49\!\cdots\!52}a^{7}-\frac{12\!\cdots\!19}{99\!\cdots\!04}a^{6}+\frac{34\!\cdots\!53}{49\!\cdots\!52}a^{5}-\frac{54\!\cdots\!59}{24\!\cdots\!76}a^{4}+\frac{13\!\cdots\!37}{24\!\cdots\!76}a^{3}-\frac{28\!\cdots\!69}{22\!\cdots\!16}a^{2}+\frac{12\!\cdots\!07}{61\!\cdots\!44}a-\frac{62\!\cdots\!09}{12\!\cdots\!88}$, $\frac{19\!\cdots\!61}{39\!\cdots\!16}a^{31}-\frac{84\!\cdots\!13}{79\!\cdots\!32}a^{30}-\frac{10\!\cdots\!07}{99\!\cdots\!04}a^{29}+\frac{17\!\cdots\!77}{79\!\cdots\!32}a^{28}+\frac{65\!\cdots\!89}{39\!\cdots\!16}a^{27}-\frac{61\!\cdots\!67}{19\!\cdots\!08}a^{26}-\frac{28\!\cdots\!13}{17\!\cdots\!92}a^{25}+\frac{21\!\cdots\!43}{79\!\cdots\!32}a^{24}+\frac{53\!\cdots\!29}{39\!\cdots\!16}a^{23}-\frac{14\!\cdots\!39}{79\!\cdots\!32}a^{22}-\frac{25\!\cdots\!97}{30\!\cdots\!32}a^{21}+\frac{68\!\cdots\!81}{79\!\cdots\!32}a^{20}+\frac{60\!\cdots\!65}{15\!\cdots\!16}a^{19}-\frac{15\!\cdots\!33}{39\!\cdots\!16}a^{18}-\frac{23\!\cdots\!19}{19\!\cdots\!08}a^{17}+\frac{93\!\cdots\!45}{79\!\cdots\!32}a^{16}+\frac{32\!\cdots\!73}{19\!\cdots\!08}a^{15}-\frac{30\!\cdots\!07}{79\!\cdots\!32}a^{14}+\frac{17\!\cdots\!93}{19\!\cdots\!08}a^{13}-\frac{24\!\cdots\!67}{30\!\cdots\!32}a^{12}+\frac{60\!\cdots\!67}{99\!\cdots\!04}a^{11}-\frac{31\!\cdots\!23}{90\!\cdots\!64}a^{10}+\frac{28\!\cdots\!59}{47\!\cdots\!88}a^{9}-\frac{49\!\cdots\!13}{99\!\cdots\!04}a^{8}+\frac{60\!\cdots\!19}{24\!\cdots\!76}a^{7}-\frac{11\!\cdots\!45}{24\!\cdots\!76}a^{6}+\frac{34\!\cdots\!81}{61\!\cdots\!44}a^{5}-\frac{32\!\cdots\!19}{19\!\cdots\!52}a^{4}+\frac{21\!\cdots\!37}{61\!\cdots\!44}a^{3}+\frac{60\!\cdots\!23}{11\!\cdots\!08}a^{2}+\frac{73\!\cdots\!03}{30\!\cdots\!22}a+\frac{12\!\cdots\!75}{30\!\cdots\!22}$, $\frac{67\!\cdots\!75}{99\!\cdots\!04}a^{31}-\frac{12\!\cdots\!33}{79\!\cdots\!32}a^{30}-\frac{12\!\cdots\!17}{79\!\cdots\!32}a^{29}+\frac{12\!\cdots\!87}{39\!\cdots\!16}a^{28}+\frac{18\!\cdots\!51}{79\!\cdots\!32}a^{27}-\frac{35\!\cdots\!33}{79\!\cdots\!32}a^{26}-\frac{30\!\cdots\!99}{13\!\cdots\!84}a^{25}+\frac{30\!\cdots\!27}{79\!\cdots\!32}a^{24}+\frac{14\!\cdots\!69}{79\!\cdots\!32}a^{23}-\frac{52\!\cdots\!11}{19\!\cdots\!08}a^{22}-\frac{91\!\cdots\!17}{79\!\cdots\!32}a^{21}+\frac{39\!\cdots\!29}{30\!\cdots\!32}a^{20}+\frac{44\!\cdots\!95}{79\!\cdots\!32}a^{19}-\frac{45\!\cdots\!01}{79\!\cdots\!32}a^{18}-\frac{33\!\cdots\!23}{19\!\cdots\!08}a^{17}+\frac{13\!\cdots\!73}{79\!\cdots\!32}a^{16}+\frac{18\!\cdots\!23}{79\!\cdots\!32}a^{15}-\frac{54\!\cdots\!09}{99\!\cdots\!04}a^{14}+\frac{95\!\cdots\!69}{79\!\cdots\!32}a^{13}-\frac{91\!\cdots\!09}{79\!\cdots\!32}a^{12}+\frac{32\!\cdots\!99}{39\!\cdots\!16}a^{11}-\frac{17\!\cdots\!67}{36\!\cdots\!56}a^{10}+\frac{81\!\cdots\!43}{99\!\cdots\!04}a^{9}-\frac{48\!\cdots\!65}{49\!\cdots\!52}a^{8}+\frac{28\!\cdots\!99}{99\!\cdots\!04}a^{7}-\frac{10\!\cdots\!21}{99\!\cdots\!04}a^{6}+\frac{13\!\cdots\!95}{24\!\cdots\!76}a^{5}-\frac{63\!\cdots\!25}{61\!\cdots\!44}a^{4}+\frac{54\!\cdots\!09}{24\!\cdots\!76}a^{3}-\frac{10\!\cdots\!63}{22\!\cdots\!16}a^{2}+\frac{20\!\cdots\!49}{12\!\cdots\!88}a-\frac{10\!\cdots\!83}{12\!\cdots\!88}$, $\frac{20\!\cdots\!67}{19\!\cdots\!08}a^{31}-\frac{22\!\cdots\!63}{79\!\cdots\!32}a^{30}-\frac{69\!\cdots\!71}{30\!\cdots\!32}a^{29}+\frac{24\!\cdots\!27}{39\!\cdots\!16}a^{28}+\frac{67\!\cdots\!09}{19\!\cdots\!08}a^{27}-\frac{69\!\cdots\!95}{79\!\cdots\!32}a^{26}-\frac{59\!\cdots\!01}{17\!\cdots\!92}a^{25}+\frac{63\!\cdots\!17}{79\!\cdots\!32}a^{24}+\frac{13\!\cdots\!35}{49\!\cdots\!52}a^{23}-\frac{22\!\cdots\!33}{39\!\cdots\!16}a^{22}-\frac{34\!\cdots\!33}{19\!\cdots\!08}a^{21}+\frac{46\!\cdots\!87}{15\!\cdots\!61}a^{20}+\frac{17\!\cdots\!99}{19\!\cdots\!08}a^{19}-\frac{10\!\cdots\!29}{79\!\cdots\!32}a^{18}-\frac{85\!\cdots\!87}{30\!\cdots\!32}a^{17}+\frac{33\!\cdots\!49}{79\!\cdots\!32}a^{16}+\frac{84\!\cdots\!39}{19\!\cdots\!08}a^{15}-\frac{21\!\cdots\!51}{19\!\cdots\!08}a^{14}+\frac{76\!\cdots\!77}{39\!\cdots\!16}a^{13}-\frac{17\!\cdots\!29}{79\!\cdots\!32}a^{12}+\frac{17\!\cdots\!03}{15\!\cdots\!16}a^{11}-\frac{26\!\cdots\!43}{36\!\cdots\!56}a^{10}+\frac{12\!\cdots\!37}{99\!\cdots\!04}a^{9}-\frac{58\!\cdots\!29}{99\!\cdots\!04}a^{8}-\frac{90\!\cdots\!97}{49\!\cdots\!52}a^{7}-\frac{64\!\cdots\!09}{99\!\cdots\!04}a^{6}-\frac{38\!\cdots\!33}{24\!\cdots\!76}a^{5}-\frac{19\!\cdots\!19}{24\!\cdots\!76}a^{4}-\frac{20\!\cdots\!55}{12\!\cdots\!88}a^{3}-\frac{29\!\cdots\!63}{22\!\cdots\!16}a^{2}-\frac{84\!\cdots\!69}{30\!\cdots\!22}a-\frac{50\!\cdots\!37}{95\!\cdots\!76}$, $\frac{22\!\cdots\!07}{15\!\cdots\!64}a^{31}-\frac{35\!\cdots\!03}{15\!\cdots\!64}a^{30}-\frac{53\!\cdots\!77}{15\!\cdots\!64}a^{29}+\frac{72\!\cdots\!85}{15\!\cdots\!64}a^{28}+\frac{41\!\cdots\!97}{79\!\cdots\!32}a^{27}-\frac{48\!\cdots\!21}{79\!\cdots\!32}a^{26}-\frac{37\!\cdots\!43}{68\!\cdots\!68}a^{25}+\frac{76\!\cdots\!39}{15\!\cdots\!64}a^{24}+\frac{70\!\cdots\!13}{15\!\cdots\!64}a^{23}-\frac{34\!\cdots\!61}{12\!\cdots\!28}a^{22}-\frac{43\!\cdots\!95}{15\!\cdots\!64}a^{21}+\frac{16\!\cdots\!67}{15\!\cdots\!64}a^{20}+\frac{10\!\cdots\!93}{79\!\cdots\!32}a^{19}-\frac{32\!\cdots\!39}{79\!\cdots\!32}a^{18}-\frac{67\!\cdots\!97}{15\!\cdots\!64}a^{17}+\frac{19\!\cdots\!31}{15\!\cdots\!64}a^{16}+\frac{11\!\cdots\!67}{15\!\cdots\!64}a^{15}-\frac{12\!\cdots\!09}{15\!\cdots\!64}a^{14}+\frac{14\!\cdots\!63}{79\!\cdots\!32}a^{13}-\frac{31\!\cdots\!05}{39\!\cdots\!16}a^{12}+\frac{57\!\cdots\!11}{19\!\cdots\!08}a^{11}+\frac{25\!\cdots\!23}{36\!\cdots\!56}a^{10}+\frac{21\!\cdots\!37}{19\!\cdots\!08}a^{9}+\frac{19\!\cdots\!13}{19\!\cdots\!08}a^{8}+\frac{27\!\cdots\!95}{49\!\cdots\!52}a^{7}+\frac{26\!\cdots\!89}{99\!\cdots\!04}a^{6}+\frac{10\!\cdots\!83}{49\!\cdots\!52}a^{5}+\frac{36\!\cdots\!43}{49\!\cdots\!52}a^{4}-\frac{98\!\cdots\!25}{24\!\cdots\!76}a^{3}+\frac{47\!\cdots\!33}{11\!\cdots\!08}a^{2}+\frac{17\!\cdots\!37}{61\!\cdots\!44}a+\frac{32\!\cdots\!15}{12\!\cdots\!88}$, $\frac{12\!\cdots\!29}{15\!\cdots\!64}a^{31}-\frac{23\!\cdots\!79}{15\!\cdots\!64}a^{30}-\frac{27\!\cdots\!67}{15\!\cdots\!64}a^{29}+\frac{48\!\cdots\!73}{15\!\cdots\!64}a^{28}+\frac{21\!\cdots\!81}{79\!\cdots\!32}a^{27}-\frac{33\!\cdots\!51}{79\!\cdots\!32}a^{26}-\frac{18\!\cdots\!77}{68\!\cdots\!68}a^{25}+\frac{42\!\cdots\!39}{12\!\cdots\!28}a^{24}+\frac{35\!\cdots\!27}{15\!\cdots\!64}a^{23}-\frac{36\!\cdots\!01}{15\!\cdots\!64}a^{22}-\frac{21\!\cdots\!89}{15\!\cdots\!64}a^{21}+\frac{16\!\cdots\!11}{15\!\cdots\!64}a^{20}+\frac{52\!\cdots\!51}{79\!\cdots\!32}a^{19}-\frac{35\!\cdots\!71}{79\!\cdots\!32}a^{18}-\frac{32\!\cdots\!51}{15\!\cdots\!64}a^{17}+\frac{21\!\cdots\!83}{15\!\cdots\!64}a^{16}+\frac{49\!\cdots\!09}{15\!\cdots\!64}a^{15}-\frac{84\!\cdots\!25}{15\!\cdots\!64}a^{14}+\frac{94\!\cdots\!85}{79\!\cdots\!32}a^{13}-\frac{17\!\cdots\!17}{19\!\cdots\!08}a^{12}+\frac{29\!\cdots\!19}{49\!\cdots\!52}a^{11}-\frac{10\!\cdots\!91}{36\!\cdots\!56}a^{10}+\frac{15\!\cdots\!09}{19\!\cdots\!08}a^{9}+\frac{33\!\cdots\!27}{19\!\cdots\!08}a^{8}+\frac{40\!\cdots\!55}{12\!\cdots\!88}a^{7}+\frac{12\!\cdots\!95}{99\!\cdots\!04}a^{6}+\frac{26\!\cdots\!27}{49\!\cdots\!52}a^{5}+\frac{86\!\cdots\!81}{49\!\cdots\!52}a^{4}+\frac{70\!\cdots\!55}{24\!\cdots\!76}a^{3}+\frac{24\!\cdots\!51}{14\!\cdots\!51}a^{2}+\frac{59\!\cdots\!60}{15\!\cdots\!61}a+\frac{13\!\cdots\!67}{12\!\cdots\!88}$, $\frac{30\!\cdots\!05}{60\!\cdots\!64}a^{31}-\frac{69\!\cdots\!09}{79\!\cdots\!32}a^{30}-\frac{92\!\cdots\!29}{79\!\cdots\!32}a^{29}+\frac{55\!\cdots\!85}{30\!\cdots\!32}a^{28}+\frac{70\!\cdots\!65}{39\!\cdots\!16}a^{27}-\frac{19\!\cdots\!89}{79\!\cdots\!32}a^{26}-\frac{62\!\cdots\!75}{34\!\cdots\!84}a^{25}+\frac{15\!\cdots\!45}{79\!\cdots\!32}a^{24}+\frac{11\!\cdots\!49}{79\!\cdots\!32}a^{23}-\frac{12\!\cdots\!85}{99\!\cdots\!04}a^{22}-\frac{71\!\cdots\!67}{79\!\cdots\!32}a^{21}+\frac{20\!\cdots\!63}{39\!\cdots\!16}a^{20}+\frac{43\!\cdots\!99}{99\!\cdots\!04}a^{19}-\frac{17\!\cdots\!57}{79\!\cdots\!32}a^{18}-\frac{10\!\cdots\!95}{79\!\cdots\!32}a^{17}+\frac{39\!\cdots\!91}{60\!\cdots\!64}a^{16}+\frac{16\!\cdots\!97}{79\!\cdots\!32}a^{15}-\frac{12\!\cdots\!21}{39\!\cdots\!16}a^{14}+\frac{28\!\cdots\!21}{39\!\cdots\!16}a^{13}-\frac{38\!\cdots\!47}{79\!\cdots\!32}a^{12}+\frac{66\!\cdots\!03}{19\!\cdots\!08}a^{11}-\frac{48\!\cdots\!97}{27\!\cdots\!12}a^{10}+\frac{50\!\cdots\!37}{99\!\cdots\!04}a^{9}+\frac{17\!\cdots\!11}{99\!\cdots\!04}a^{8}+\frac{12\!\cdots\!25}{49\!\cdots\!52}a^{7}+\frac{28\!\cdots\!81}{99\!\cdots\!04}a^{6}+\frac{93\!\cdots\!31}{24\!\cdots\!76}a^{5}+\frac{15\!\cdots\!63}{24\!\cdots\!76}a^{4}+\frac{16\!\cdots\!67}{61\!\cdots\!44}a^{3}+\frac{13\!\cdots\!43}{22\!\cdots\!16}a^{2}+\frac{28\!\cdots\!21}{30\!\cdots\!22}a+\frac{11\!\cdots\!53}{12\!\cdots\!88}$, $\frac{95\!\cdots\!41}{15\!\cdots\!64}a^{31}+\frac{46\!\cdots\!79}{15\!\cdots\!64}a^{30}-\frac{20\!\cdots\!11}{12\!\cdots\!28}a^{29}-\frac{13\!\cdots\!39}{15\!\cdots\!64}a^{28}+\frac{21\!\cdots\!63}{79\!\cdots\!32}a^{27}+\frac{20\!\cdots\!57}{12\!\cdots\!88}a^{26}-\frac{21\!\cdots\!01}{68\!\cdots\!68}a^{25}-\frac{35\!\cdots\!23}{15\!\cdots\!64}a^{24}+\frac{40\!\cdots\!03}{15\!\cdots\!64}a^{23}+\frac{35\!\cdots\!67}{15\!\cdots\!64}a^{22}-\frac{25\!\cdots\!41}{15\!\cdots\!64}a^{21}-\frac{26\!\cdots\!93}{15\!\cdots\!64}a^{20}+\frac{61\!\cdots\!41}{79\!\cdots\!32}a^{19}+\frac{33\!\cdots\!57}{39\!\cdots\!16}a^{18}-\frac{33\!\cdots\!87}{12\!\cdots\!28}a^{17}-\frac{40\!\cdots\!55}{15\!\cdots\!64}a^{16}+\frac{92\!\cdots\!37}{15\!\cdots\!64}a^{15}+\frac{12\!\cdots\!99}{15\!\cdots\!64}a^{14}-\frac{13\!\cdots\!47}{79\!\cdots\!32}a^{13}+\frac{14\!\cdots\!93}{79\!\cdots\!32}a^{12}-\frac{14\!\cdots\!45}{76\!\cdots\!08}a^{11}+\frac{13\!\cdots\!83}{90\!\cdots\!64}a^{10}-\frac{86\!\cdots\!95}{19\!\cdots\!08}a^{9}+\frac{38\!\cdots\!57}{19\!\cdots\!08}a^{8}+\frac{87\!\cdots\!37}{61\!\cdots\!44}a^{7}+\frac{91\!\cdots\!35}{12\!\cdots\!88}a^{6}-\frac{58\!\cdots\!53}{49\!\cdots\!52}a^{5}+\frac{81\!\cdots\!39}{49\!\cdots\!52}a^{4}-\frac{34\!\cdots\!21}{24\!\cdots\!76}a^{3}+\frac{29\!\cdots\!19}{22\!\cdots\!16}a^{2}+\frac{51\!\cdots\!78}{15\!\cdots\!61}a+\frac{14\!\cdots\!89}{23\!\cdots\!94}$, $\frac{41\!\cdots\!17}{79\!\cdots\!32}a^{31}-\frac{61\!\cdots\!35}{79\!\cdots\!32}a^{30}-\frac{10\!\cdots\!75}{79\!\cdots\!32}a^{29}+\frac{62\!\cdots\!61}{39\!\cdots\!16}a^{28}+\frac{38\!\cdots\!25}{19\!\cdots\!08}a^{27}-\frac{16\!\cdots\!63}{79\!\cdots\!32}a^{26}-\frac{69\!\cdots\!59}{34\!\cdots\!84}a^{25}+\frac{12\!\cdots\!71}{79\!\cdots\!32}a^{24}+\frac{13\!\cdots\!67}{79\!\cdots\!32}a^{23}-\frac{18\!\cdots\!61}{19\!\cdots\!08}a^{22}-\frac{81\!\cdots\!73}{79\!\cdots\!32}a^{21}+\frac{12\!\cdots\!63}{39\!\cdots\!16}a^{20}+\frac{19\!\cdots\!41}{39\!\cdots\!16}a^{19}-\frac{68\!\cdots\!59}{60\!\cdots\!64}a^{18}-\frac{12\!\cdots\!19}{79\!\cdots\!32}a^{17}+\frac{27\!\cdots\!41}{79\!\cdots\!32}a^{16}+\frac{21\!\cdots\!63}{79\!\cdots\!32}a^{15}-\frac{11\!\cdots\!75}{39\!\cdots\!16}a^{14}+\frac{15\!\cdots\!25}{24\!\cdots\!76}a^{13}-\frac{16\!\cdots\!05}{79\!\cdots\!32}a^{12}+\frac{38\!\cdots\!65}{12\!\cdots\!88}a^{11}+\frac{30\!\cdots\!65}{36\!\cdots\!56}a^{10}+\frac{36\!\cdots\!81}{99\!\cdots\!04}a^{9}+\frac{39\!\cdots\!61}{99\!\cdots\!04}a^{8}+\frac{51\!\cdots\!71}{24\!\cdots\!76}a^{7}+\frac{11\!\cdots\!43}{99\!\cdots\!04}a^{6}+\frac{30\!\cdots\!51}{24\!\cdots\!76}a^{5}+\frac{87\!\cdots\!41}{24\!\cdots\!76}a^{4}+\frac{55\!\cdots\!37}{12\!\cdots\!88}a^{3}+\frac{44\!\cdots\!81}{17\!\cdots\!32}a^{2}+\frac{18\!\cdots\!51}{61\!\cdots\!44}a+\frac{20\!\cdots\!91}{12\!\cdots\!88}$, $\frac{14\!\cdots\!97}{15\!\cdots\!64}a^{31}-\frac{72\!\cdots\!69}{39\!\cdots\!16}a^{30}-\frac{34\!\cdots\!57}{15\!\cdots\!64}a^{29}+\frac{30\!\cdots\!41}{79\!\cdots\!32}a^{28}+\frac{13\!\cdots\!43}{39\!\cdots\!16}a^{27}-\frac{41\!\cdots\!89}{79\!\cdots\!32}a^{26}-\frac{23\!\cdots\!13}{68\!\cdots\!68}a^{25}+\frac{35\!\cdots\!13}{79\!\cdots\!32}a^{24}+\frac{43\!\cdots\!91}{15\!\cdots\!64}a^{23}-\frac{11\!\cdots\!83}{39\!\cdots\!16}a^{22}-\frac{26\!\cdots\!61}{15\!\cdots\!64}a^{21}+\frac{26\!\cdots\!25}{19\!\cdots\!08}a^{20}+\frac{65\!\cdots\!39}{79\!\cdots\!32}a^{19}-\frac{22\!\cdots\!87}{39\!\cdots\!16}a^{18}-\frac{40\!\cdots\!41}{15\!\cdots\!64}a^{17}+\frac{34\!\cdots\!93}{19\!\cdots\!08}a^{16}+\frac{46\!\cdots\!47}{12\!\cdots\!28}a^{15}-\frac{13\!\cdots\!37}{19\!\cdots\!08}a^{14}+\frac{11\!\cdots\!49}{79\!\cdots\!32}a^{13}-\frac{88\!\cdots\!71}{79\!\cdots\!32}a^{12}+\frac{71\!\cdots\!85}{99\!\cdots\!04}a^{11}-\frac{11\!\cdots\!91}{36\!\cdots\!56}a^{10}+\frac{18\!\cdots\!13}{19\!\cdots\!08}a^{9}+\frac{20\!\cdots\!23}{99\!\cdots\!04}a^{8}+\frac{94\!\cdots\!97}{24\!\cdots\!76}a^{7}+\frac{70\!\cdots\!19}{99\!\cdots\!04}a^{6}+\frac{28\!\cdots\!99}{49\!\cdots\!52}a^{5}+\frac{56\!\cdots\!91}{24\!\cdots\!76}a^{4}+\frac{46\!\cdots\!57}{24\!\cdots\!76}a^{3}+\frac{50\!\cdots\!49}{22\!\cdots\!16}a^{2}+\frac{85\!\cdots\!43}{23\!\cdots\!94}a+\frac{17\!\cdots\!73}{12\!\cdots\!88}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 16449571016975.969 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 16449571016975.969 \cdot 540}{6\cdot\sqrt{2553263220825544945190771147906377486172160000000000000000}}\cr\approx \mathstrut & 0.172873006520871 \end{aligned}\] (assuming GRH)
Galois group
$D_4^2:C_2^3$ (as 32T12882):
A solvable group of order 512 |
The 80 conjugacy class representatives for $D_4^2:C_2^3$ |
Character table for $D_4^2:C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Minimal sibling: | not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/padicField/7.4.0.1}{4} }^{8}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}{,}\,{\href{/padicField/11.2.0.1}{2} }^{8}$ | ${\href{/padicField/13.4.0.1}{4} }^{4}{,}\,{\href{/padicField/13.2.0.1}{2} }^{8}$ | ${\href{/padicField/17.8.0.1}{8} }^{4}$ | ${\href{/padicField/19.2.0.1}{2} }^{16}$ | ${\href{/padicField/23.2.0.1}{2} }^{16}$ | R | ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{4}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}{,}\,{\href{/padicField/41.2.0.1}{2} }^{8}$ | ${\href{/padicField/43.8.0.1}{8} }^{4}$ | ${\href{/padicField/47.8.0.1}{8} }^{4}$ | ${\href{/padicField/53.4.0.1}{4} }^{8}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}{,}\,{\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.8.12.2 | $x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
2.8.12.2 | $x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.2 | $x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
2.8.12.2 | $x^{8} + 16 x^{7} + 120 x^{6} + 546 x^{5} + 1646 x^{4} + 3352 x^{3} + 4457 x^{2} + 3470 x + 1203$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
\(3\) | 3.16.8.1 | $x^{16} + 24 x^{14} + 4 x^{13} + 254 x^{12} + 24 x^{11} + 1508 x^{10} - 172 x^{9} + 5273 x^{8} - 2344 x^{7} + 11640 x^{6} - 7392 x^{5} + 22724 x^{4} - 10768 x^{3} + 19008 x^{2} - 11056 x + 8596$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ |
3.16.8.1 | $x^{16} + 24 x^{14} + 4 x^{13} + 254 x^{12} + 24 x^{11} + 1508 x^{10} - 172 x^{9} + 5273 x^{8} - 2344 x^{7} + 11640 x^{6} - 7392 x^{5} + 22724 x^{4} - 10768 x^{3} + 19008 x^{2} - 11056 x + 8596$ | $2$ | $8$ | $8$ | $C_8\times C_2$ | $[\ ]_{2}^{8}$ | |
\(5\) | 5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(29\) | 29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.2.0.1 | $x^{2} + 24 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
29.4.2.1 | $x^{4} + 1440 x^{3} + 535166 x^{2} + 12071520 x + 1504089$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(1289\) | Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | ||
Deg $4$ | $2$ | $2$ | $2$ | ||||
Deg $4$ | $2$ | $2$ | $2$ |