Normalized defining polynomial
\( x^{32} - 2 x^{31} + x^{29} + 14 x^{28} - 23 x^{27} - 25 x^{26} + 77 x^{25} + 32 x^{24} - 233 x^{23} + 130 x^{22} + 275 x^{21} - 204 x^{20} - 500 x^{19} + 369 x^{18} + 976 x^{17} - 775 x^{16} - 1988 x^{15} + 2706 x^{14} + 1255 x^{13} - 4074 x^{12} + 870 x^{11} + 3435 x^{10} - 2784 x^{9} - 528 x^{8} + 1624 x^{7} - 465 x^{6} - 564 x^{5} + 639 x^{4} - 293 x^{3} + 55 x^{2} - x + 1 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(24788700386255228556692600250244140625\)\(\medspace = 5^{28}\cdot 13^{16}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $14.74$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $5, 13$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $8$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $\frac{1}{421} a^{30} + \frac{189}{421} a^{29} - \frac{50}{421} a^{28} - \frac{39}{421} a^{27} - \frac{181}{421} a^{26} - \frac{190}{421} a^{25} + \frac{99}{421} a^{24} + \frac{157}{421} a^{23} - \frac{123}{421} a^{22} - \frac{42}{421} a^{21} - \frac{168}{421} a^{20} - \frac{106}{421} a^{19} - \frac{135}{421} a^{18} + \frac{90}{421} a^{17} + \frac{181}{421} a^{16} - \frac{160}{421} a^{15} + \frac{32}{421} a^{14} + \frac{56}{421} a^{13} + \frac{70}{421} a^{12} + \frac{135}{421} a^{11} + \frac{20}{421} a^{10} + \frac{176}{421} a^{9} - \frac{120}{421} a^{8} - \frac{95}{421} a^{7} + \frac{168}{421} a^{6} + \frac{90}{421} a^{5} + \frac{199}{421} a^{4} + \frac{54}{421} a^{3} - \frac{17}{421} a^{2} - \frac{41}{421} a + \frac{96}{421}$, $\frac{1}{517148361018374107192113327427772720512229} a^{31} + \frac{430805350340824651525469753882864583858}{517148361018374107192113327427772720512229} a^{30} + \frac{27627694179173548158188749248595791237297}{517148361018374107192113327427772720512229} a^{29} - \frac{464680664818468584713677567518084033525}{1228380905031767475515708616217987459649} a^{28} + \frac{248407000550493038860296954157724044116676}{517148361018374107192113327427772720512229} a^{27} + \frac{213646319340272871134728851276575306684770}{517148361018374107192113327427772720512229} a^{26} + \frac{236816491942312863094270540791292035323861}{517148361018374107192113327427772720512229} a^{25} + \frac{88629003397520214146681506232912337573262}{517148361018374107192113327427772720512229} a^{24} + \frac{56592518430908620553208482473168923740512}{517148361018374107192113327427772720512229} a^{23} - \frac{170916112055014706383135683723138111367709}{517148361018374107192113327427772720512229} a^{22} + \frac{65640843811658512135150859851821641013562}{517148361018374107192113327427772720512229} a^{21} - \frac{91667372340354381546958780722483177843643}{517148361018374107192113327427772720512229} a^{20} + \frac{1155472194241730407324151362755099682278}{4744480376315358781579021352548373582681} a^{19} + \frac{21623831458152184019315080147502879828542}{517148361018374107192113327427772720512229} a^{18} + \frac{258228635727781823356130024098507239135602}{517148361018374107192113327427772720512229} a^{17} + \frac{158456988986831857369639877204009037006739}{517148361018374107192113327427772720512229} a^{16} + \frac{213110684078708192853893471657007227185156}{517148361018374107192113327427772720512229} a^{15} - \frac{42953082617150918504834338800660710103876}{517148361018374107192113327427772720512229} a^{14} - \frac{219125144950476361959017609416559014443632}{517148361018374107192113327427772720512229} a^{13} - \frac{160138982699928664992754086762163920547472}{517148361018374107192113327427772720512229} a^{12} - \frac{118972979296600603548876684057577475077279}{517148361018374107192113327427772720512229} a^{11} - \frac{142556138803531238020395537403295034436812}{517148361018374107192113327427772720512229} a^{10} - \frac{172860824390552831355007990369548256002499}{517148361018374107192113327427772720512229} a^{9} + \frac{120592322082442828708132475676728730141012}{517148361018374107192113327427772720512229} a^{8} + \frac{160040757229481672434861189817883166384715}{517148361018374107192113327427772720512229} a^{7} + \frac{165191014833135764428376230972861896892163}{517148361018374107192113327427772720512229} a^{6} - \frac{180576967788478650186819853503579061920927}{517148361018374107192113327427772720512229} a^{5} - \frac{214007854917660186745641928509757730909213}{517148361018374107192113327427772720512229} a^{4} + \frac{35561032050330356703608901964878357616847}{517148361018374107192113327427772720512229} a^{3} - \frac{60170917769748571427345659557275634638}{517148361018374107192113327427772720512229} a^{2} + \frac{46336910681507966444588089948349167057813}{517148361018374107192113327427772720512229} a + \frac{141952077080397152566331110758560354541958}{517148361018374107192113327427772720512229}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -\frac{6423504503897763274593831789201417}{13582138582017456975740811356110849} a^{31} + \frac{7178582452064768517573258172256749}{13582138582017456975740811356110849} a^{30} + \frac{7067206241421796320356437201706777}{13582138582017456975740811356110849} a^{29} - \frac{1387658770165721849722628031402285}{13582138582017456975740811356110849} a^{28} - \frac{91687916282481827262138240324224439}{13582138582017456975740811356110849} a^{27} + \frac{67505959129681174008770660844121277}{13582138582017456975740811356110849} a^{26} + \frac{230816759281668032679765042160439415}{13582138582017456975740811356110849} a^{25} - \frac{303917237527655503407448652478540044}{13582138582017456975740811356110849} a^{24} - \frac{498333409341672780997534407394437763}{13582138582017456975740811356110849} a^{23} + \frac{1105613185044314640357390839560857893}{13582138582017456975740811356110849} a^{22} + \frac{185939608096098732574143187822123175}{13582138582017456975740811356110849} a^{21} - \frac{1761136541240886568117589419166090260}{13582138582017456975740811356110849} a^{20} - \frac{1975658090272192291210630468746397}{124606775981811531887530379413861} a^{19} + \frac{3250542113034486814507257709811605278}{13582138582017456975740811356110849} a^{18} + \frac{438925690650856033356595708791793706}{13582138582017456975740811356110849} a^{17} - \frac{6297357585930183706348102420950697120}{13582138582017456975740811356110849} a^{16} - \frac{472959949491997546585316064864329249}{13582138582017456975740811356110849} a^{15} + \frac{13162977646406243048540825239190696596}{13582138582017456975740811356110849} a^{14} - \frac{6016079853381329578031803061953102364}{13582138582017456975740811356110849} a^{13} - \frac{15029858183900166867855796226263769568}{13582138582017456975740811356110849} a^{12} + \frac{14248454465299087378515964043834627856}{13582138582017456975740811356110849} a^{11} + \frac{8617334512911968181073810535918181761}{13582138582017456975740811356110849} a^{10} - \frac{16888081068548984322439802448482682320}{13582138582017456975740811356110849} a^{9} + \frac{2468421839294359809519159076309269927}{13582138582017456975740811356110849} a^{8} + \frac{8022833735917993911655954850849516188}{13582138582017456975740811356110849} a^{7} - \frac{4285955043396325216690318456045600163}{13582138582017456975740811356110849} a^{6} - \frac{1687070555771401240397734324093192233}{13582138582017456975740811356110849} a^{5} + \frac{2913089983939363212288096549397022023}{13582138582017456975740811356110849} a^{4} - \frac{1487993229528095286120908123732764408}{13582138582017456975740811356110849} a^{3} + \frac{195403714016035807910534405552108474}{13582138582017456975740811356110849} a^{2} + \frac{97567936121317121148810131759033208}{13582138582017456975740811356110849} a + \frac{3023404456381992601855054844715558}{13582138582017456975740811356110849} \) (order $10$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 1271231.1521675275 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 96 |
The 28 conjugacy class representatives for $C_8.A_4$ |
Character table for $C_8.A_4$ is not computed |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.0.4225.1, 8.0.17850625.1, 16.0.199153008056640625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $24{,}\,{\href{/LocalNumberField/2.8.0.1}{8} }$ | $24{,}\,{\href{/LocalNumberField/3.8.0.1}{8} }$ | R | $24{,}\,{\href{/LocalNumberField/7.8.0.1}{8} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | R | $24{,}\,{\href{/LocalNumberField/17.8.0.1}{8} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }^{2}{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}$ | $24{,}\,{\href{/LocalNumberField/23.8.0.1}{8} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }^{2}{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | $24{,}\,{\href{/LocalNumberField/37.8.0.1}{8} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | $24{,}\,{\href{/LocalNumberField/43.8.0.1}{8} }$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }^{2}{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
5 | Data not computed | ||||||
13 | Data not computed |
Artin representations
Label | Dimension | Conductor | Artin stem field | $G$ | Ind | $\chi(c)$ | |
---|---|---|---|---|---|---|---|
* | 1.1.1t1.a.a | $1$ | $1$ | \(\Q\) | $C_1$ | $1$ | $1$ |
* | 1.5.2t1.a.a | $1$ | $ 5 $ | \(\Q(\sqrt{5}) \) | $C_2$ (as 2T1) | $1$ | $1$ |
1.65.6t1.b.a | $1$ | $ 5 \cdot 13 $ | 6.6.3570125.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.65.6t1.b.b | $1$ | $ 5 \cdot 13 $ | 6.6.3570125.1 | $C_6$ (as 6T1) | $0$ | $1$ | |
1.13.3t1.a.a | $1$ | $ 13 $ | 3.3.169.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
1.13.3t1.a.b | $1$ | $ 13 $ | 3.3.169.1 | $C_3$ (as 3T1) | $0$ | $1$ | |
* | 1.5.4t1.a.a | $1$ | $ 5 $ | \(\Q(\zeta_{5})\) | $C_4$ (as 4T1) | $0$ | $-1$ |
* | 1.5.4t1.a.b | $1$ | $ 5 $ | \(\Q(\zeta_{5})\) | $C_4$ (as 4T1) | $0$ | $-1$ |
1.65.12t1.a.a | $1$ | $ 5 \cdot 13 $ | 12.0.1593224064453125.1 | $C_{12}$ (as 12T1) | $0$ | $-1$ | |
1.65.12t1.a.b | $1$ | $ 5 \cdot 13 $ | 12.0.1593224064453125.1 | $C_{12}$ (as 12T1) | $0$ | $-1$ | |
1.65.12t1.a.c | $1$ | $ 5 \cdot 13 $ | 12.0.1593224064453125.1 | $C_{12}$ (as 12T1) | $0$ | $-1$ | |
1.65.12t1.a.d | $1$ | $ 5 \cdot 13 $ | 12.0.1593224064453125.1 | $C_{12}$ (as 12T1) | $0$ | $-1$ | |
2.4225.48.a.a | $2$ | $ 5^{2} \cdot 13^{2}$ | 32.0.24788700386255228556692600250244140625.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ | |
2.4225.48.a.b | $2$ | $ 5^{2} \cdot 13^{2}$ | 32.0.24788700386255228556692600250244140625.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ | |
2.4225.48.a.c | $2$ | $ 5^{2} \cdot 13^{2}$ | 32.0.24788700386255228556692600250244140625.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ | |
2.4225.48.a.d | $2$ | $ 5^{2} \cdot 13^{2}$ | 32.0.24788700386255228556692600250244140625.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ | |
* | 2.325.32t402.a.a | $2$ | $ 5^{2} \cdot 13 $ | 32.0.24788700386255228556692600250244140625.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.325.32t402.a.b | $2$ | $ 5^{2} \cdot 13 $ | 32.0.24788700386255228556692600250244140625.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.325.32t402.a.c | $2$ | $ 5^{2} \cdot 13 $ | 32.0.24788700386255228556692600250244140625.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.325.32t402.a.d | $2$ | $ 5^{2} \cdot 13 $ | 32.0.24788700386255228556692600250244140625.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.325.32t402.a.e | $2$ | $ 5^{2} \cdot 13 $ | 32.0.24788700386255228556692600250244140625.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.325.32t402.a.f | $2$ | $ 5^{2} \cdot 13 $ | 32.0.24788700386255228556692600250244140625.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.325.32t402.a.g | $2$ | $ 5^{2} \cdot 13 $ | 32.0.24788700386255228556692600250244140625.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 2.325.32t402.a.h | $2$ | $ 5^{2} \cdot 13 $ | 32.0.24788700386255228556692600250244140625.1 | $C_8.A_4$ (as 32T402) | $0$ | $0$ |
* | 3.4225.4t4.a.a | $3$ | $ 5^{2} \cdot 13^{2}$ | 4.0.4225.1 | $A_4$ (as 4T4) | $1$ | $-1$ |
* | 3.845.6t6.a.a | $3$ | $ 5 \cdot 13^{2}$ | 6.2.142805.1 | $A_4\times C_2$ (as 6T6) | $1$ | $-1$ |
* | 3.21125.12t29.a.a | $3$ | $ 5^{3} \cdot 13^{2}$ | 12.8.1593224064453125.1 | $C_4\times A_4$ (as 12T29) | $0$ | $1$ |
* | 3.21125.12t29.a.b | $3$ | $ 5^{3} \cdot 13^{2}$ | 12.8.1593224064453125.1 | $C_4\times A_4$ (as 12T29) | $0$ | $1$ |