Normalized defining polynomial
\( x^{32} - 8 x^{30} + 32 x^{28} - 80 x^{26} + 127 x^{24} - 80 x^{22} - 224 x^{20} + 936 x^{18} - 2175 x^{16} + 3744 x^{14} - 3584 x^{12} - 5120 x^{10} + 32512 x^{8} - 81920 x^{6} + 131072 x^{4} - 131072 x^{2} + 65536 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(23790908696561643372461609312578223409406672896\)\(\medspace = 2^{96}\cdot 3^{16}\cdot 17^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $28.14$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 17$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $16$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{10} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{19} - \frac{1}{8} a^{11} + \frac{1}{8} a^{3}$, $\frac{1}{112} a^{20} - \frac{1}{14} a^{18} + \frac{2}{7} a^{16} + \frac{47}{112} a^{12} + \frac{1}{7} a^{10} + \frac{3}{7} a^{8} - \frac{1}{2} a^{6} - \frac{31}{112} a^{4} - \frac{2}{7} a^{2} + \frac{1}{7}$, $\frac{1}{224} a^{21} - \frac{1}{28} a^{19} + \frac{1}{7} a^{17} - \frac{1}{2} a^{15} - \frac{65}{224} a^{13} + \frac{1}{14} a^{11} - \frac{2}{7} a^{9} - \frac{1}{4} a^{7} - \frac{31}{224} a^{5} - \frac{1}{7} a^{3} - \frac{3}{7} a$, $\frac{1}{448} a^{22} - \frac{1}{14} a^{18} - \frac{5}{28} a^{16} - \frac{65}{448} a^{14} + \frac{3}{8} a^{12} - \frac{5}{14} a^{10} + \frac{13}{56} a^{8} + \frac{193}{448} a^{6} + \frac{3}{8} a^{4} - \frac{2}{7} a^{2} + \frac{2}{7}$, $\frac{1}{896} a^{23} - \frac{1}{28} a^{19} - \frac{5}{56} a^{17} + \frac{383}{896} a^{15} + \frac{3}{16} a^{13} + \frac{9}{28} a^{11} - \frac{43}{112} a^{9} + \frac{193}{896} a^{7} + \frac{3}{16} a^{5} - \frac{1}{7} a^{3} + \frac{1}{7} a$, $\frac{1}{23296} a^{24} - \frac{19}{208} a^{18} + \frac{45}{256} a^{16} + \frac{15}{32} a^{14} + \frac{5}{26} a^{12} + \frac{15}{32} a^{10} + \frac{19}{256} a^{8} - \frac{157}{416} a^{6} + \frac{3}{8} a^{4} + \frac{16}{91}$, $\frac{1}{46592} a^{25} - \frac{19}{416} a^{19} + \frac{45}{512} a^{17} - \frac{17}{64} a^{15} - \frac{21}{52} a^{13} + \frac{15}{64} a^{11} + \frac{19}{512} a^{9} - \frac{157}{832} a^{7} - \frac{5}{16} a^{5} - \frac{75}{182} a$, $\frac{1}{93184} a^{26} + \frac{23}{5824} a^{20} + \frac{571}{7168} a^{18} + \frac{201}{896} a^{16} + \frac{31}{104} a^{14} + \frac{337}{896} a^{12} + \frac{1413}{7168} a^{10} - \frac{3595}{11648} a^{8} + \frac{11}{32} a^{6} + \frac{19}{112} a^{4} + \frac{17}{91} a^{2} + \frac{3}{7}$, $\frac{1}{186368} a^{27} + \frac{23}{11648} a^{21} + \frac{571}{14336} a^{19} + \frac{201}{1792} a^{17} - \frac{73}{208} a^{15} + \frac{337}{1792} a^{13} - \frac{5755}{14336} a^{11} - \frac{3595}{23296} a^{9} + \frac{11}{64} a^{7} - \frac{93}{224} a^{5} - \frac{37}{91} a^{3} - \frac{2}{7} a$, $\frac{1}{11554816} a^{28} + \frac{1}{222208} a^{26} + \frac{3}{722176} a^{24} + \frac{751}{722176} a^{22} + \frac{1275}{888832} a^{20} + \frac{2973}{2888704} a^{18} - \frac{71961}{722176} a^{16} + \frac{35281}{111104} a^{14} + \frac{1773025}{11554816} a^{12} + \frac{1161367}{2888704} a^{10} + \frac{14803}{55552} a^{8} + \frac{30053}{180544} a^{6} + \frac{1243}{22568} a^{4} - \frac{27}{217} a^{2} + \frac{1244}{2821}$, $\frac{1}{23109632} a^{29} + \frac{1}{444416} a^{27} + \frac{3}{1444352} a^{25} + \frac{751}{1444352} a^{23} + \frac{1275}{1777664} a^{21} + \frac{2973}{5777408} a^{19} - \frac{71961}{1444352} a^{17} - \frac{75823}{222208} a^{15} + \frac{1773025}{23109632} a^{13} + \frac{1161367}{5777408} a^{11} + \frac{14803}{111104} a^{9} - \frac{150491}{361088} a^{7} - \frac{21325}{45136} a^{5} + \frac{95}{217} a^{3} + \frac{622}{2821} a$, $\frac{1}{4483268608} a^{30} + \frac{23}{560408576} a^{28} - \frac{3}{2694272} a^{26} + \frac{45}{9038848} a^{24} - \frac{3039873}{4483268608} a^{22} + \frac{58955}{21554176} a^{20} - \frac{990237}{70051072} a^{18} + \frac{147580773}{560408576} a^{16} - \frac{171259579}{344866816} a^{14} - \frac{12516013}{140102144} a^{12} - \frac{19337341}{140102144} a^{10} + \frac{866457}{2694272} a^{8} + \frac{455489}{1094548} a^{6} - \frac{1392331}{4378192} a^{4} - \frac{53}{42098} a^{2} + \frac{100882}{273637}$, $\frac{1}{8966537216} a^{31} + \frac{23}{1120817152} a^{29} - \frac{3}{5388544} a^{27} + \frac{45}{18077696} a^{25} - \frac{3039873}{8966537216} a^{23} + \frac{58955}{43108352} a^{21} - \frac{990237}{140102144} a^{19} + \frac{147580773}{1120817152} a^{17} + \frac{173607237}{689733632} a^{15} - \frac{12516013}{280204288} a^{13} - \frac{19337341}{280204288} a^{11} + \frac{866457}{5388544} a^{9} + \frac{455489}{2189096} a^{7} - \frac{1392331}{8756384} a^{5} - \frac{53}{84196} a^{3} + \frac{50441}{273637} a$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{14177}{140102144} a^{31} - \frac{841741}{2241634304} a^{29} + \frac{31183}{43108352} a^{27} - \frac{20575}{35025536} a^{25} - \frac{30469}{35025536} a^{23} + \frac{897217}{172433408} a^{21} - \frac{6169573}{560408576} a^{19} + \frac{1059733}{70051072} a^{17} - \frac{585987}{21554176} a^{15} - \frac{11507309}{2241634304} a^{13} + \frac{79556065}{560408576} a^{11} - \frac{577719}{1347136} a^{9} + \frac{22725057}{35025536} a^{7} - \frac{761483}{1094548} a^{5} - \frac{11059}{24056} a^{3} + \frac{425238}{273637} a \) (order $48$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 37735500852.51004 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^2\times C_2^2:C_4$ (as 32T262):
A solvable group of order 64 |
The 40 conjugacy class representatives for $C_2^2\times C_2^2:C_4$ |
Character table for $C_2^2\times C_2^2:C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |