Properties

Label 32.0.23062555743...4944.1
Degree $32$
Signature $[0, 16]$
Discriminant $2^{48}\cdot 17^{30}$
Root discriminant $40.28$
Ramified primes $2, 17$
Class number $72$ (GRH)
Class group $[3, 24]$ (GRH)
Galois group $C_2\times C_{16}$ (as 32T32)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![65536, 0, -32768, 0, 16384, 0, -8192, 0, 4096, 0, -2048, 0, 1024, 0, -512, 0, 256, 0, -128, 0, 64, 0, -32, 0, 16, 0, -8, 0, 4, 0, -2, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 2*x^30 + 4*x^28 - 8*x^26 + 16*x^24 - 32*x^22 + 64*x^20 - 128*x^18 + 256*x^16 - 512*x^14 + 1024*x^12 - 2048*x^10 + 4096*x^8 - 8192*x^6 + 16384*x^4 - 32768*x^2 + 65536)
 
gp: K = bnfinit(x^32 - 2*x^30 + 4*x^28 - 8*x^26 + 16*x^24 - 32*x^22 + 64*x^20 - 128*x^18 + 256*x^16 - 512*x^14 + 1024*x^12 - 2048*x^10 + 4096*x^8 - 8192*x^6 + 16384*x^4 - 32768*x^2 + 65536, 1)
 

Normalized defining polynomial

\( x^{32} - 2 x^{30} + 4 x^{28} - 8 x^{26} + 16 x^{24} - 32 x^{22} + 64 x^{20} - 128 x^{18} + 256 x^{16} - 512 x^{14} + 1024 x^{12} - 2048 x^{10} + 4096 x^{8} - 8192 x^{6} + 16384 x^{4} - 32768 x^{2} + 65536 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2306255574353269294321282113641705264626385702354944=2^{48}\cdot 17^{30}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.28$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(136=2^{3}\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{136}(1,·)$, $\chi_{136}(3,·)$, $\chi_{136}(129,·)$, $\chi_{136}(9,·)$, $\chi_{136}(11,·)$, $\chi_{136}(19,·)$, $\chi_{136}(25,·)$, $\chi_{136}(27,·)$, $\chi_{136}(33,·)$, $\chi_{136}(35,·)$, $\chi_{136}(41,·)$, $\chi_{136}(43,·)$, $\chi_{136}(49,·)$, $\chi_{136}(57,·)$, $\chi_{136}(59,·)$, $\chi_{136}(65,·)$, $\chi_{136}(67,·)$, $\chi_{136}(73,·)$, $\chi_{136}(75,·)$, $\chi_{136}(81,·)$, $\chi_{136}(83,·)$, $\chi_{136}(89,·)$, $\chi_{136}(91,·)$, $\chi_{136}(97,·)$, $\chi_{136}(99,·)$, $\chi_{136}(131,·)$, $\chi_{136}(105,·)$, $\chi_{136}(107,·)$, $\chi_{136}(113,·)$, $\chi_{136}(115,·)$, $\chi_{136}(121,·)$, $\chi_{136}(123,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{4096} a^{24}$, $\frac{1}{4096} a^{25}$, $\frac{1}{8192} a^{26}$, $\frac{1}{8192} a^{27}$, $\frac{1}{16384} a^{28}$, $\frac{1}{16384} a^{29}$, $\frac{1}{32768} a^{30}$, $\frac{1}{32768} a^{31}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}\times C_{24}$, which has order $72$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1}{4096} a^{24} \) (order $34$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 598124168304.8442 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{16}$ (as 32T32):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_{16}$
Character table for $C_2\times C_{16}$ is not computed

Intermediate fields

\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-34}) \), \(\Q(\sqrt{-2}, \sqrt{17})\), 4.4.4913.1, 4.0.314432.2, 8.0.98867482624.1, \(\Q(\zeta_{17})^+\), 8.0.1680747204608.1, 16.0.2824911165797606216433664.1, \(\Q(\zeta_{17})\), 16.16.48023489818559305679372288.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
17Data not computed