Normalized defining polynomial
\( x^{32} + 992 x^{30} + 445904 x^{28} + 120117312 x^{26} + 21610391400 x^{24} + 2739237167680 x^{22} + 251483043048160 x^{20} + 16928401412041856 x^{18} + 836368832263692948 x^{16} + 30060792811796500160 x^{14} + 770922695655253881376 x^{12} + 13656344894464497327232 x^{10} + 158755009398149781429072 x^{8} + 1115784195608048666238336 x^{6} + 4117775007601131982546240 x^{4} + 6007107069912239598067456 x^{2} + 1454846243494370527656962 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{31} a^{2}$, $\frac{1}{31} a^{3}$, $\frac{1}{961} a^{4}$, $\frac{1}{961} a^{5}$, $\frac{1}{29791} a^{6}$, $\frac{1}{29791} a^{7}$, $\frac{1}{923521} a^{8}$, $\frac{1}{923521} a^{9}$, $\frac{1}{28629151} a^{10}$, $\frac{1}{28629151} a^{11}$, $\frac{1}{887503681} a^{12}$, $\frac{1}{887503681} a^{13}$, $\frac{1}{27512614111} a^{14}$, $\frac{1}{27512614111} a^{15}$, $\frac{1}{852891037441} a^{16}$, $\frac{1}{852891037441} a^{17}$, $\frac{1}{26439622160671} a^{18}$, $\frac{1}{26439622160671} a^{19}$, $\frac{1}{819628286980801} a^{20}$, $\frac{1}{819628286980801} a^{21}$, $\frac{1}{25408476896404831} a^{22}$, $\frac{1}{25408476896404831} a^{23}$, $\frac{1}{787662783788549761} a^{24}$, $\frac{1}{787662783788549761} a^{25}$, $\frac{1}{24417546297445042591} a^{26}$, $\frac{1}{24417546297445042591} a^{27}$, $\frac{1}{756943935220796320321} a^{28}$, $\frac{1}{756943935220796320321} a^{29}$, $\frac{1}{23465261991844685929951} a^{30}$, $\frac{1}{23465261991844685929951} a^{31}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 32 |
| The 32 conjugacy class representatives for $C_{32}$ |
| Character table for $C_{32}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\), \(\Q(\zeta_{64})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $32$ | $32$ | $16^{2}$ | $32$ | $32$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{4}$ | $32$ | $16^{2}$ | $32$ | R | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $32$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $31$ | 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 31.4.2.2 | $x^{4} - 31 x^{2} + 11532$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |