Properties

Label 32.0.22694117345...7296.1
Degree $32$
Signature $[0, 16]$
Discriminant $2^{96}\cdot 3^{16}\cdot 13^{16}$
Root discriminant $49.96$
Ramified primes $2, 3, 13$
Class number Not computed
Class group Not computed
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![43046721, 0, 0, 0, 0, 0, 0, 0, -5242239, 0, 0, 0, 0, 0, 0, 0, 631840, 0, 0, 0, 0, 0, 0, 0, -799, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 799*x^24 + 631840*x^16 - 5242239*x^8 + 43046721)
 
gp: K = bnfinit(x^32 - 799*x^24 + 631840*x^16 - 5242239*x^8 + 43046721, 1)
 

Normalized defining polynomial

\( x^{32} - 799 x^{24} + 631840 x^{16} - 5242239 x^{8} + 43046721 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2269411734589106044097671648260059368198723646622007296=2^{96}\cdot 3^{16}\cdot 13^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 13$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(624=2^{4}\cdot 3\cdot 13\)
Dirichlet character group:    $\lbrace$$\chi_{624}(1,·)$, $\chi_{624}(131,·)$, $\chi_{624}(389,·)$, $\chi_{624}(391,·)$, $\chi_{624}(521,·)$, $\chi_{624}(337,·)$, $\chi_{624}(365,·)$, $\chi_{624}(259,·)$, $\chi_{624}(25,·)$, $\chi_{624}(155,·)$, $\chi_{624}(157,·)$, $\chi_{624}(415,·)$, $\chi_{624}(545,·)$, $\chi_{624}(547,·)$, $\chi_{624}(53,·)$, $\chi_{624}(311,·)$, $\chi_{624}(313,·)$, $\chi_{624}(287,·)$, $\chi_{624}(181,·)$, $\chi_{624}(77,·)$, $\chi_{624}(79,·)$, $\chi_{624}(209,·)$, $\chi_{624}(467,·)$, $\chi_{624}(469,·)$, $\chi_{624}(599,·)$, $\chi_{624}(571,·)$, $\chi_{624}(103,·)$, $\chi_{624}(233,·)$, $\chi_{624}(235,·)$, $\chi_{624}(493,·)$, $\chi_{624}(623,·)$, $\chi_{624}(443,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{217} a^{16} - \frac{74}{217} a^{8} + \frac{51}{217}$, $\frac{1}{651} a^{17} + \frac{143}{651} a^{9} + \frac{268}{651} a$, $\frac{1}{1953} a^{18} + \frac{794}{1953} a^{10} - \frac{383}{1953} a^{2}$, $\frac{1}{5859} a^{19} + \frac{794}{5859} a^{11} - \frac{2336}{5859} a^{3}$, $\frac{1}{17577} a^{20} + \frac{6653}{17577} a^{12} + \frac{3523}{17577} a^{4}$, $\frac{1}{52731} a^{21} + \frac{24230}{52731} a^{13} - \frac{14054}{52731} a^{5}$, $\frac{1}{158193} a^{22} - \frac{28501}{158193} a^{14} - \frac{14054}{158193} a^{6}$, $\frac{1}{474579} a^{23} - \frac{186694}{474579} a^{15} + \frac{144139}{474579} a^{7}$, $\frac{1}{899573986080} a^{24} - \frac{61}{203391} a^{16} - \frac{69359}{203391} a^{8} + \frac{32223041}{137109280}$, $\frac{1}{2698721958240} a^{25} - \frac{61}{610173} a^{17} - \frac{272750}{610173} a^{9} + \frac{32223041}{411327840} a$, $\frac{1}{8096165874720} a^{26} - \frac{61}{1830519} a^{18} + \frac{337423}{1830519} a^{10} + \frac{443550881}{1233983520} a^{2}$, $\frac{1}{24288497624160} a^{27} - \frac{61}{5491557} a^{19} - \frac{1493096}{5491557} a^{11} + \frac{443550881}{3701950560} a^{3}$, $\frac{1}{72865492872480} a^{28} - \frac{61}{16474671} a^{20} + \frac{3998461}{16474671} a^{12} - \frac{3258399679}{11105851680} a^{4}$, $\frac{1}{218596478617440} a^{29} - \frac{61}{49424013} a^{21} + \frac{20473132}{49424013} a^{13} - \frac{3258399679}{33317555040} a^{5}$, $\frac{1}{655789435852320} a^{30} - \frac{61}{148272039} a^{22} + \frac{20473132}{148272039} a^{14} - \frac{36575954719}{99952665120} a^{6}$, $\frac{1}{1967368307556960} a^{31} - \frac{61}{444816117} a^{23} - \frac{127798907}{444816117} a^{15} - \frac{136528619839}{299857995360} a^{7}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{2143717}{24288497624160} a^{27} + \frac{2683}{38440899} a^{19} - \frac{2117473}{38440899} a^{11} + \frac{651969}{137109280} a^{3} \) (order $48$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-13}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-78}) \), \(\Q(\sqrt{78}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-26}) \), \(\Q(\sqrt{26}) \), \(\Q(\sqrt{-39}) \), \(\Q(\sqrt{39}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(i, \sqrt{13})\), \(\Q(i, \sqrt{78})\), \(\Q(i, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{-13})\), \(\Q(\sqrt{-6}, \sqrt{-13})\), \(\Q(\sqrt{-6}, \sqrt{13})\), \(\Q(\sqrt{6}, \sqrt{13})\), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{26})\), \(\Q(i, \sqrt{39})\), \(\Q(\zeta_{12})\), \(\Q(\sqrt{2}, \sqrt{-13})\), \(\Q(\sqrt{-2}, \sqrt{-13})\), \(\Q(\sqrt{3}, \sqrt{-13})\), \(\Q(\sqrt{-3}, \sqrt{-13})\), \(\Q(\sqrt{2}, \sqrt{13})\), \(\Q(\sqrt{-2}, \sqrt{13})\), \(\Q(\sqrt{-3}, \sqrt{13})\), \(\Q(\sqrt{3}, \sqrt{13})\), \(\Q(\sqrt{2}, \sqrt{-39})\), \(\Q(\sqrt{-2}, \sqrt{39})\), \(\Q(\sqrt{3}, \sqrt{-26})\), \(\Q(\sqrt{-3}, \sqrt{26})\), \(\Q(\sqrt{2}, \sqrt{39})\), \(\Q(\sqrt{-2}, \sqrt{-39})\), \(\Q(\sqrt{-3}, \sqrt{-26})\), \(\Q(\sqrt{3}, \sqrt{26})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{6}, \sqrt{-26})\), \(\Q(\sqrt{6}, \sqrt{26})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{3})\), \(\Q(\sqrt{-6}, \sqrt{-26})\), \(\Q(\sqrt{-6}, \sqrt{26})\), 4.4.3115008.1, 4.0.3115008.1, 4.0.18432.2, 4.4.18432.1, 4.0.2048.2, \(\Q(\zeta_{16})^+\), 4.4.346112.1, 4.0.346112.2, 8.0.151613669376.3, 8.0.1871773696.1, 8.0.592240896.1, 8.0.151613669376.8, 8.0.151613669376.9, \(\Q(\zeta_{24})\), 8.0.151613669376.2, 8.0.151613669376.5, 8.0.151613669376.7, 8.0.151613669376.6, 8.0.151613669376.1, 8.0.9475854336.2, 8.0.151613669376.4, 8.8.151613669376.1, 8.0.9475854336.1, 8.0.38813099360256.36, 8.0.1358954496.4, \(\Q(\zeta_{16})\), 8.0.479174066176.3, 8.0.38813099360256.11, 8.0.38813099360256.28, 8.0.479174066176.1, 8.0.479174066176.2, 8.8.9703274840064.1, 8.0.9703274840064.4, 8.0.119793516544.1, 8.8.119793516544.1, 8.0.9703274840064.3, 8.0.9703274840064.5, 8.0.9703274840064.1, 8.0.9703274840064.2, 8.8.38813099360256.2, 8.0.38813099360256.29, 8.0.38813099360256.45, 8.8.38813099360256.4, 8.8.38813099360256.3, 8.0.38813099360256.32, 8.0.1358954496.3, \(\Q(\zeta_{48})^+\), 8.0.9703274840064.6, 8.0.9703274840064.7, 8.0.339738624.2, 8.0.339738624.1, 16.0.22986704741655040229376.1, 16.0.1506456681949104716472385536.11, 16.0.229607785695641627262976.1, 16.0.1506456681949104716472385536.7, 16.0.1506456681949104716472385536.10, 16.0.1506456681949104716472385536.8, \(\Q(\zeta_{48})\), 16.0.1506456681949104716472385536.9, 16.0.1506456681949104716472385536.4, 16.0.1506456681949104716472385536.5, 16.0.1506456681949104716472385536.6, 16.0.94153542621819044779524096.2, 16.0.94153542621819044779524096.1, 16.16.1506456681949104716472385536.1, 16.0.1506456681949104716472385536.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ R ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$13$13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
13.8.4.1$x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$