Normalized defining polynomial
\( x^{32} + 625279 x^{16} + 43046721 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{173383} a^{16} + \frac{52565}{173383}$, $\frac{1}{520149} a^{17} - \frac{120818}{520149} a$, $\frac{1}{1560447} a^{18} - \frac{640967}{1560447} a^{2}$, $\frac{1}{4681341} a^{19} - \frac{640967}{4681341} a^{3}$, $\frac{1}{14044023} a^{20} - \frac{5322308}{14044023} a^{4}$, $\frac{1}{42132069} a^{21} - \frac{19366331}{42132069} a^{5}$, $\frac{1}{126396207} a^{22} + \frac{22765738}{126396207} a^{6}$, $\frac{1}{379188621} a^{23} + \frac{149161945}{379188621} a^{7}$, $\frac{1}{1137565863} a^{24} - \frac{230026676}{1137565863} a^{8}$, $\frac{1}{3412697589} a^{25} + \frac{907539187}{3412697589} a^{9}$, $\frac{1}{10238092767} a^{26} + \frac{4320236776}{10238092767} a^{10}$, $\frac{1}{30714278301} a^{27} - \frac{5917855991}{30714278301} a^{11}$, $\frac{1}{92142834903} a^{28} - \frac{36632134292}{92142834903} a^{12}$, $\frac{1}{276428504709} a^{29} - \frac{36632134292}{276428504709} a^{13}$, $\frac{1}{829285514127} a^{30} - \frac{36632134292}{829285514127} a^{14}$, $\frac{1}{2487856542381} a^{31} - \frac{36632134292}{2487856542381} a^{15}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{19}{42132069} a^{21} - \frac{11228332}{42132069} a^{5} \) (order $32$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 13 | Data not computed | ||||||