Normalized defining polynomial
\( x^{32} - 8 x^{30} - 124 x^{28} + 736 x^{26} + 4997 x^{24} - 15672 x^{22} - 27588 x^{20} + 201200 x^{18} + 376952 x^{16} - 3438736 x^{14} + 6156800 x^{12} - 2082176 x^{10} + 382501 x^{8} - 16686272 x^{6} + 26615832 x^{4} - 10774256 x^{2} + 3243601 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{4} a^{24} + \frac{1}{4}$, $\frac{1}{4} a^{25} + \frac{1}{4} a$, $\frac{1}{188} a^{26} - \frac{7}{94} a^{24} + \frac{8}{47} a^{22} + \frac{9}{47} a^{20} - \frac{14}{47} a^{18} + \frac{15}{47} a^{16} - \frac{17}{47} a^{14} + \frac{20}{47} a^{12} + \frac{2}{47} a^{10} + \frac{18}{47} a^{8} + \frac{22}{47} a^{6} - \frac{17}{47} a^{4} - \frac{11}{188} a^{2} - \frac{39}{94}$, $\frac{1}{338588} a^{27} - \frac{5855}{84647} a^{25} - \frac{35289}{84647} a^{23} - \frac{32797}{84647} a^{21} + \frac{20196}{84647} a^{19} + \frac{3869}{84647} a^{17} + \frac{22308}{84647} a^{15} + \frac{11206}{84647} a^{13} - \frac{39337}{84647} a^{11} - \frac{35420}{84647} a^{9} + \frac{27752}{84647} a^{7} + \frac{39886}{84647} a^{5} + \frac{38905}{338588} a^{3} + \frac{10297}{84647} a$, $\frac{1}{444566044} a^{28} + \frac{150832}{111141511} a^{26} - \frac{622895}{17098694} a^{24} - \frac{40220311}{111141511} a^{22} + \frac{5491634}{111141511} a^{20} - \frac{27139002}{111141511} a^{18} + \frac{13486584}{111141511} a^{16} + \frac{3323245}{111141511} a^{14} + \frac{43561072}{111141511} a^{12} - \frac{12933}{84647} a^{10} - \frac{44134569}{111141511} a^{8} + \frac{17806751}{111141511} a^{6} + \frac{3129421}{444566044} a^{4} + \frac{39933064}{111141511} a^{2} - \frac{11927}{123422}$, $\frac{1}{444566044} a^{29} - \frac{163}{111141511} a^{27} + \frac{1080341}{34197388} a^{25} + \frac{45601308}{111141511} a^{23} + \frac{31034736}{111141511} a^{21} + \frac{447128}{111141511} a^{19} + \frac{10659695}{111141511} a^{17} - \frac{22139764}{111141511} a^{15} + \frac{54993363}{111141511} a^{13} - \frac{32371}{84647} a^{11} + \frac{9666919}{111141511} a^{9} + \frac{819616}{2364713} a^{7} + \frac{112575849}{444566044} a^{5} - \frac{55168839}{111141511} a^{3} + \frac{87150681}{444566044} a$, $\frac{1}{2706538595135248791566307062992096314495269591322580516} a^{30} - \frac{600487548852727940477907727917675789758642113}{1353269297567624395783153531496048157247634795661290258} a^{28} - \frac{37458470103965598184745781558172935868261981994895}{208195276548865291658946697153238178038097660870967732} a^{26} - \frac{324739941360682433099820124315344238226709280286357703}{2706538595135248791566307062992096314495269591322580516} a^{24} - \frac{92155560990404062312762394252119162804776663197383721}{676634648783812197891576765748024078623817397830645129} a^{22} + \frac{125933975581520629901308803254805101091065275327434632}{676634648783812197891576765748024078623817397830645129} a^{20} - \frac{228199875049020571162462232208124573866952602861023771}{676634648783812197891576765748024078623817397830645129} a^{18} + \frac{327988367990323730983693076167851847868967002900204751}{676634648783812197891576765748024078623817397830645129} a^{16} + \frac{107644422330533918808471548554243044614029632814620108}{676634648783812197891576765748024078623817397830645129} a^{14} + \frac{8163532059898341318315793536150536562811018503014018}{52048819137216322914736674288309544509524415217741933} a^{12} - \frac{74782012744973850591682423093023032201010160120946673}{676634648783812197891576765748024078623817397830645129} a^{10} - \frac{15244715789237413399200802015096195785017218083719742}{676634648783812197891576765748024078623817397830645129} a^{8} - \frac{396251917918477859695144951377819180113569120327133987}{2706538595135248791566307062992096314495269591322580516} a^{6} + \frac{556176832633228654026892313078525653602742531369985587}{1353269297567624395783153531496048157247634795661290258} a^{4} - \frac{536021386190466792040473948633710046757769635024141039}{2706538595135248791566307062992096314495269591322580516} a^{2} - \frac{33843220613181253124649784056895166915632435584483}{115599820404700328516905439840776334279898756730132}$, $\frac{1}{2706538595135248791566307062992096314495269591322580516} a^{31} - \frac{600487548852727940477907727917675789758642113}{1353269297567624395783153531496048157247634795661290258} a^{29} + \frac{12495565347323910637001193285697404043313225396}{52048819137216322914736674288309544509524415217741933} a^{27} - \frac{120887159595913021800440646515660341306482566873693425}{1353269297567624395783153531496048157247634795661290258} a^{25} + \frac{293080225615598055340417979201098605351420624995373030}{676634648783812197891576765748024078623817397830645129} a^{23} - \frac{303610361335876705691231618546745123830425760265410320}{676634648783812197891576765748024078623817397830645129} a^{21} + \frac{146684193596805322923792061033819419887105879110712915}{676634648783812197891576765748024078623817397830645129} a^{19} + \frac{184647050259142232140358350029966656688153818996473627}{676634648783812197891576765748024078623817397830645129} a^{17} + \frac{159091261551919382033750507812743440021107128442793960}{676634648783812197891576765748024078623817397830645129} a^{15} + \frac{12092696168334698229076568858398200265196939011022228}{52048819137216322914736674288309544509524415217741933} a^{13} - \frac{310121725845783269922856730042915844690097877459210560}{676634648783812197891576765748024078623817397830645129} a^{11} + \frac{306114176438565320066098253315890891871186865080333272}{676634648783812197891576765748024078623817397830645129} a^{9} - \frac{398426178370344989278313981352696760528535726730313491}{2706538595135248791566307062992096314495269591322580516} a^{7} + \frac{208982610330298851396878901575463786898111713297564349}{1353269297567624395783153531496048157247634795661290258} a^{5} - \frac{127832285393372614110845386430121587147317549216125804}{676634648783812197891576765748024078623817397830645129} a^{3} + \frac{39314189497528605691596002271703101940352613774745489}{104097638274432645829473348576619089019048830435483866} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_8$ (as 32T43):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_4\times C_8$ |
| Character table for $C_4\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $17$ | 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |
| 17.8.7.3 | $x^{8} - 17$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |