Normalized defining polynomial
\( x^{32} - 81343 x^{16} + 4294967296 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(2235113542185251937084439154754616201052160000000000000000=2^{128}\cdot 3^{16}\cdot 5^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.97$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(480=2^{5}\cdot 3\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{480}(1,·)$, $\chi_{480}(389,·)$, $\chi_{480}(391,·)$, $\chi_{480}(269,·)$, $\chi_{480}(271,·)$, $\chi_{480}(149,·)$, $\chi_{480}(151,·)$, $\chi_{480}(29,·)$, $\chi_{480}(31,·)$, $\chi_{480}(419,·)$, $\chi_{480}(421,·)$, $\chi_{480}(299,·)$, $\chi_{480}(301,·)$, $\chi_{480}(179,·)$, $\chi_{480}(181,·)$, $\chi_{480}(59,·)$, $\chi_{480}(61,·)$, $\chi_{480}(449,·)$, $\chi_{480}(451,·)$, $\chi_{480}(329,·)$, $\chi_{480}(331,·)$, $\chi_{480}(209,·)$, $\chi_{480}(211,·)$, $\chi_{480}(89,·)$, $\chi_{480}(91,·)$, $\chi_{480}(479,·)$, $\chi_{480}(359,·)$, $\chi_{480}(361,·)$, $\chi_{480}(239,·)$, $\chi_{480}(241,·)$, $\chi_{480}(119,·)$, $\chi_{480}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{26537} a^{16} - \frac{866}{26537}$, $\frac{1}{106148} a^{17} - \frac{27403}{106148} a$, $\frac{1}{424592} a^{18} - \frac{133551}{424592} a^{2}$, $\frac{1}{1698368} a^{19} - \frac{558143}{1698368} a^{3}$, $\frac{1}{6793472} a^{20} + \frac{2838593}{6793472} a^{4}$, $\frac{1}{27173888} a^{21} - \frac{10748351}{27173888} a^{5}$, $\frac{1}{108695552} a^{22} + \frac{16425537}{108695552} a^{6}$, $\frac{1}{434782208} a^{23} - \frac{200965567}{434782208} a^{7}$, $\frac{1}{1739128832} a^{24} + \frac{233816641}{1739128832} a^{8}$, $\frac{1}{6956515328} a^{25} - \frac{1505312191}{6956515328} a^{9}$, $\frac{1}{27826061312} a^{26} + \frac{12407718465}{27826061312} a^{10}$, $\frac{1}{111304245248} a^{27} - \frac{15418342847}{111304245248} a^{11}$, $\frac{1}{445216980992} a^{28} - \frac{15418342847}{445216980992} a^{12}$, $\frac{1}{1780867923968} a^{29} - \frac{460635323839}{1780867923968} a^{13}$, $\frac{1}{7123471695872} a^{30} - \frac{460635323839}{7123471695872} a^{14}$, $\frac{1}{28493886783488} a^{31} - \frac{460635323839}{28493886783488} a^{15}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5}{27173888} a^{21} - \frac{606021}{27173888} a^{5} \) (order $32$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||