Normalized defining polynomial
\( x^{32} - 32 x^{30} + 464 x^{28} - 4032 x^{26} + 23400 x^{24} - 95680 x^{22} + 283360 x^{20} - 615296 x^{18} + 978421 x^{16} - 1101648 x^{14} + 711048 x^{12} + 239392 x^{10} - 1255068 x^{8} + 1437408 x^{6} - 736112 x^{4} + 140992 x^{2} + 4866436 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{987} a^{16} - \frac{16}{987} a^{14} + \frac{104}{987} a^{12} - \frac{352}{987} a^{10} - \frac{109}{329} a^{8} + \frac{15}{47} a^{6} + \frac{16}{47} a^{4} - \frac{64}{987} a^{2} + \frac{379}{987}$, $\frac{1}{987} a^{17} - \frac{16}{987} a^{15} + \frac{104}{987} a^{13} - \frac{352}{987} a^{11} - \frac{109}{329} a^{9} + \frac{15}{47} a^{7} + \frac{16}{47} a^{5} - \frac{64}{987} a^{3} + \frac{379}{987} a$, $\frac{1}{987} a^{18} - \frac{152}{987} a^{14} + \frac{325}{987} a^{12} - \frac{37}{987} a^{10} + \frac{6}{329} a^{8} + \frac{21}{47} a^{6} + \frac{377}{987} a^{4} + \frac{114}{329} a^{2} + \frac{142}{987}$, $\frac{1}{987} a^{19} - \frac{152}{987} a^{15} + \frac{325}{987} a^{13} - \frac{37}{987} a^{11} + \frac{6}{329} a^{9} + \frac{21}{47} a^{7} + \frac{377}{987} a^{5} + \frac{114}{329} a^{3} + \frac{142}{987} a$, $\frac{1}{987} a^{20} - \frac{19}{141} a^{14} - \frac{1}{47} a^{12} - \frac{4}{21} a^{10} + \frac{29}{329} a^{8} - \frac{106}{987} a^{6} + \frac{30}{329} a^{4} + \frac{284}{987} a^{2} + \frac{362}{987}$, $\frac{1}{987} a^{21} - \frac{19}{141} a^{15} - \frac{1}{47} a^{13} - \frac{4}{21} a^{11} + \frac{29}{329} a^{9} - \frac{106}{987} a^{7} + \frac{30}{329} a^{5} + \frac{284}{987} a^{3} + \frac{362}{987} a$, $\frac{1}{987} a^{22} - \frac{25}{141} a^{14} - \frac{58}{329} a^{12} - \frac{340}{987} a^{10} - \frac{169}{987} a^{8} - \frac{152}{329} a^{6} - \frac{430}{987} a^{4} - \frac{254}{987} a^{2} + \frac{10}{141}$, $\frac{1}{987} a^{23} - \frac{25}{141} a^{15} - \frac{58}{329} a^{13} - \frac{340}{987} a^{11} - \frac{169}{987} a^{9} - \frac{152}{329} a^{7} - \frac{430}{987} a^{5} - \frac{254}{987} a^{3} + \frac{10}{141} a$, $\frac{1}{2179296} a^{24} - \frac{1}{90804} a^{22} + \frac{1}{8648} a^{20} + \frac{43}{136206} a^{18} - \frac{45}{121072} a^{16} - \frac{2545}{22701} a^{14} + \frac{3341}{136206} a^{12} + \frac{150}{7567} a^{10} - \frac{12521}{34592} a^{8} - \frac{373}{828} a^{6} - \frac{54137}{181608} a^{4} - \frac{5015}{15134} a^{2} + \frac{246193}{1089648}$, $\frac{1}{4807526976} a^{25} - \frac{31}{66771208} a^{23} + \frac{4253}{400627248} a^{21} - \frac{31835}{300470436} a^{19} - \frac{46913}{114464928} a^{17} + \frac{703739}{50078406} a^{15} - \frac{30148141}{300470436} a^{13} + \frac{8737189}{25039203} a^{11} - \frac{447373373}{1602508992} a^{9} + \frac{144010003}{600940872} a^{7} - \frac{13195417}{400627248} a^{5} - \frac{38076779}{100156812} a^{3} + \frac{112054897}{2403763488} a$, $\frac{1}{4807526976} a^{26} - \frac{13}{2403763488} a^{24} - \frac{53}{133542416} a^{22} + \frac{253}{26127864} a^{20} - \frac{226309}{2403763488} a^{18} - \frac{28807}{57232464} a^{16} + \frac{4358111}{300470436} a^{14} - \frac{15280109}{150235218} a^{12} - \frac{142324095}{534169664} a^{10} - \frac{1163478125}{2403763488} a^{8} + \frac{58285145}{1201881744} a^{6} - \frac{88984757}{200313624} a^{4} - \frac{19278961}{51143904} a^{2} - \frac{163391}{1089648}$, $\frac{1}{4807526976} a^{27} - \frac{1665}{133542416} a^{23} + \frac{85843}{300470436} a^{21} + \frac{21823}{114464928} a^{19} - \frac{1447}{100156812} a^{17} - \frac{78257101}{300470436} a^{15} + \frac{3642819}{8346401} a^{13} - \frac{122565759}{534169664} a^{11} - \frac{99793567}{300470436} a^{9} + \frac{7452913}{57232464} a^{7} - \frac{1955485}{4769372} a^{5} + \frac{155820145}{2403763488} a^{3} - \frac{28284203}{100156812} a$, $\frac{1}{4807526976} a^{28} - \frac{3}{38154976} a^{24} - \frac{125}{10731087} a^{22} + \frac{218941}{801254496} a^{20} + \frac{41}{101476} a^{18} + \frac{39395}{1201881744} a^{16} - \frac{7073606}{25039203} a^{14} - \frac{6160349}{1602508992} a^{12} - \frac{44308255}{300470436} a^{10} + \frac{390963053}{801254496} a^{8} + \frac{3233679}{8346401} a^{6} - \frac{1008352235}{2403763488} a^{4} - \frac{2543987}{14308116} a^{2} + \frac{136169}{363216}$, $\frac{1}{4807526976} a^{29} - \frac{8033}{42924348} a^{23} + \frac{26711}{114464928} a^{21} - \frac{191}{1451548} a^{19} + \frac{10831}{85848696} a^{17} + \frac{2056238}{25039203} a^{15} + \frac{26923237}{228929856} a^{13} + \frac{146193797}{300470436} a^{11} - \frac{74085895}{200313624} a^{9} - \frac{213631}{622092} a^{7} - \frac{607222919}{2403763488} a^{5} - \frac{44162719}{100156812} a^{3} - \frac{21925781}{200313624} a$, $\frac{1}{4807526976} a^{30} + \frac{11}{150235218} a^{24} - \frac{165983}{801254496} a^{22} + \frac{6311}{14308116} a^{20} + \frac{155233}{600940872} a^{18} + \frac{2749}{7154058} a^{16} + \frac{163438017}{534169664} a^{14} + \frac{66049817}{300470436} a^{12} + \frac{17018691}{66771208} a^{10} + \frac{501335}{8346401} a^{8} + \frac{766991545}{2403763488} a^{6} - \frac{2244307}{100156812} a^{4} - \frac{11089909}{200313624} a^{2} - \frac{2739}{15134}$, $\frac{1}{4807526976} a^{31} - \frac{35039}{801254496} a^{23} - \frac{8553}{33385604} a^{21} + \frac{39401}{600940872} a^{19} - \frac{11689}{50078406} a^{17} - \frac{15300671}{534169664} a^{15} + \frac{22351027}{100156812} a^{13} + \frac{48567385}{200313624} a^{11} + \frac{14756971}{50078406} a^{9} + \frac{18050599}{38154976} a^{7} + \frac{3140749}{100156812} a^{5} + \frac{16054963}{200313624} a^{3} + \frac{41508671}{150235218} a$
Class group and class number
$C_{3}\times C_{240}$, which has order $720$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16643930584707.18 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{32}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||