Normalized defining polynomial
\( x^{32} - 223 x^{16} + 65536 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{119} a^{16} - \frac{52}{119}$, $\frac{1}{238} a^{17} + \frac{67}{238} a$, $\frac{1}{476} a^{18} - \frac{171}{476} a^{2}$, $\frac{1}{952} a^{19} + \frac{305}{952} a^{3}$, $\frac{1}{1904} a^{20} + \frac{305}{1904} a^{4}$, $\frac{1}{3808} a^{21} - \frac{1599}{3808} a^{5}$, $\frac{1}{7616} a^{22} + \frac{2209}{7616} a^{6}$, $\frac{1}{15232} a^{23} + \frac{2209}{15232} a^{7}$, $\frac{1}{30464} a^{24} - \frac{13023}{30464} a^{8}$, $\frac{1}{60928} a^{25} - \frac{13023}{60928} a^{9}$, $\frac{1}{121856} a^{26} + \frac{47905}{121856} a^{10}$, $\frac{1}{243712} a^{27} - \frac{73951}{243712} a^{11}$, $\frac{1}{487424} a^{28} - \frac{73951}{487424} a^{12}$, $\frac{1}{974848} a^{29} - \frac{73951}{974848} a^{13}$, $\frac{1}{1949696} a^{30} + \frac{900897}{1949696} a^{14}$, $\frac{1}{3899392} a^{31} - \frac{1048799}{3899392} a^{15}$
Class group and class number
$C_{3}\times C_{4080}$, which has order $12240$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{3}{7616} a^{22} + \frac{989}{7616} a^{6} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 34585710193758.383 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/17.1.0.1}{1} }^{32}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||