Normalized defining polynomial
\( x^{32} - 32 x^{30} + 464 x^{28} - 4032 x^{26} + 23400 x^{24} - 95680 x^{22} + 283360 x^{20} - 615296 x^{18} + 980628 x^{16} - 1136960 x^{14} + 940576 x^{12} - 537472 x^{10} + 201552 x^{8} - 45696 x^{6} + 5440 x^{4} - 256 x^{2} + 4870849 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{987} a^{16} - \frac{16}{987} a^{14} + \frac{104}{987} a^{12} - \frac{352}{987} a^{10} - \frac{109}{329} a^{8} + \frac{15}{47} a^{6} + \frac{16}{47} a^{4} - \frac{64}{987} a^{2} + \frac{2}{987}$, $\frac{1}{2178309} a^{17} - \frac{832057}{2178309} a^{15} - \frac{589135}{2178309} a^{13} - \frac{821536}{2178309} a^{11} + \frac{29830}{726103} a^{9} + \frac{11906}{103729} a^{7} + \frac{39778}{103729} a^{5} - \frac{1035427}{2178309} a^{3} - \frac{589237}{2178309} a$, $\frac{1}{2178309} a^{18} - \frac{6}{726103} a^{16} - \frac{831905}{2178309} a^{14} + \frac{108067}{311187} a^{12} - \frac{894832}{2178309} a^{10} + \frac{153966}{726103} a^{8} - \frac{30846}{103729} a^{6} - \frac{293875}{2178309} a^{4} + \frac{617992}{2178309} a^{2} - \frac{233}{987}$, $\frac{1}{2178309} a^{19} - \frac{560768}{2178309} a^{15} + \frac{1043584}{2178309} a^{13} - \frac{434317}{2178309} a^{11} - \frac{35197}{726103} a^{9} - \frac{23996}{103729} a^{7} - \frac{505954}{2178309} a^{5} - \frac{84746}{311187} a^{3} - \frac{228952}{2178309} a$, $\frac{1}{2178309} a^{20} - \frac{190}{2178309} a^{16} + \frac{262524}{726103} a^{14} - \frac{948548}{2178309} a^{12} + \frac{797072}{2178309} a^{10} - \frac{278322}{726103} a^{8} - \frac{366913}{2178309} a^{6} + \frac{60916}{311187} a^{4} + \frac{132187}{311187} a^{2} - \frac{479}{987}$, $\frac{1}{2178309} a^{21} - \frac{66430}{311187} a^{15} + \frac{18470}{103729} a^{13} - \frac{13507}{46347} a^{11} + \frac{306657}{726103} a^{9} - \frac{784771}{2178309} a^{7} + \frac{17725}{311187} a^{5} + \frac{80663}{726103} a^{3} + \frac{259885}{2178309} a$, $\frac{1}{2178309} a^{22} + \frac{667}{2178309} a^{16} - \frac{528035}{2178309} a^{14} - \frac{127219}{2178309} a^{12} + \frac{374842}{2178309} a^{10} - \frac{579520}{2178309} a^{8} + \frac{123661}{311187} a^{6} - \frac{42929}{726103} a^{4} + \frac{952883}{2178309} a^{2} + \frac{422}{987}$, $\frac{1}{2178309} a^{23} - \frac{144973}{311187} a^{15} + \frac{243402}{726103} a^{13} - \frac{594514}{2178309} a^{11} + \frac{723302}{2178309} a^{9} - \frac{50033}{311187} a^{7} + \frac{115957}{726103} a^{5} + \frac{352913}{726103} a^{3} - \frac{45928}{311187} a$, $\frac{1}{2178309} a^{24} + \frac{409}{2178309} a^{16} - \frac{265151}{2178309} a^{14} + \frac{20454}{103729} a^{12} + \frac{28978}{103729} a^{10} + \frac{954106}{2178309} a^{8} - \frac{23084}{726103} a^{6} + \frac{59382}{726103} a^{4} + \frac{17898}{726103} a^{2} - \frac{67}{987}$, $\frac{1}{2178309} a^{25} + \frac{229958}{2178309} a^{15} - \frac{8650}{46347} a^{13} - \frac{1021133}{2178309} a^{11} - \frac{113480}{311187} a^{9} + \frac{16879}{726103} a^{7} + \frac{173139}{726103} a^{5} + \frac{135913}{311187} a^{3} - \frac{134605}{311187} a$, $\frac{1}{2178309} a^{26} + \frac{430}{2178309} a^{16} + \frac{1087589}{2178309} a^{14} - \frac{930646}{2178309} a^{12} - \frac{597937}{2178309} a^{10} + \frac{347929}{726103} a^{8} + \frac{34098}{726103} a^{6} + \frac{10114}{311187} a^{4} + \frac{225901}{726103} a^{2} - \frac{208}{987}$, $\frac{1}{2178309} a^{27} - \frac{182962}{726103} a^{15} - \frac{13640}{103729} a^{13} - \frac{74505}{726103} a^{11} - \frac{135220}{726103} a^{9} - \frac{223915}{726103} a^{7} + \frac{42349}{311187} a^{5} - \frac{642032}{2178309} a^{3} + \frac{229010}{2178309} a$, $\frac{1}{2178309} a^{28} + \frac{219}{726103} a^{16} - \frac{121964}{726103} a^{14} + \frac{97641}{726103} a^{12} + \frac{8235}{726103} a^{10} + \frac{142447}{726103} a^{8} - \frac{123176}{311187} a^{6} + \frac{1026460}{2178309} a^{4} - \frac{88798}{2178309} a^{2} - \frac{163}{329}$, $\frac{1}{2178309} a^{29} - \frac{153334}{726103} a^{15} - \frac{18304}{103729} a^{13} - \frac{21275}{103729} a^{11} + \frac{21274}{103729} a^{9} + \frac{60310}{311187} a^{7} - \frac{1035047}{2178309} a^{5} + \frac{554333}{2178309} a^{3} + \frac{162931}{726103} a$, $\frac{1}{2178309} a^{30} - \frac{946}{2178309} a^{16} + \frac{983956}{2178309} a^{14} - \frac{627749}{2178309} a^{12} + \frac{53908}{2178309} a^{10} + \frac{614179}{2178309} a^{8} - \frac{200801}{2178309} a^{6} + \frac{137210}{2178309} a^{4} - \frac{572774}{2178309} a^{2} + \frac{416}{987}$, $\frac{1}{2178309} a^{31} + \frac{75861}{726103} a^{15} - \frac{100785}{726103} a^{13} + \frac{179055}{726103} a^{11} + \frac{317668}{2178309} a^{9} + \frac{1066423}{2178309} a^{7} - \frac{359209}{2178309} a^{5} + \frac{7254}{103729} a^{3} - \frac{343765}{726103} a$
Class group and class number
$C_{17}\times C_{34}$, which has order $578$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67435414427975.664 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{16}$ (as 32T32):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_{16}$ |
| Character table for $C_2\times C_{16}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | $16^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | $16^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | $16^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | $16^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | $16^{2}$ | $16^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||