Properties

Label 32.0.22300745198...0000.1
Degree $32$
Signature $[0, 16]$
Discriminant $2^{160}\cdot 5^{16}$
Root discriminant $71.55$
Ramified primes $2, 5$
Class number Not computed
Class group Not computed
Galois group $C_2\times C_{16}$ (as 32T32)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![152587890625, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 152587890625)
 
gp: K = bnfinit(x^32 + 152587890625, 1)
 

Normalized defining polynomial

\( x^{32} + 152587890625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(223007451985306231415357182726483615059804160000000000000000=2^{160}\cdot 5^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $71.55$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(320=2^{6}\cdot 5\)
Dirichlet character group:    $\lbrace$$\chi_{320}(1,·)$, $\chi_{320}(259,·)$, $\chi_{320}(139,·)$, $\chi_{320}(269,·)$, $\chi_{320}(271,·)$, $\chi_{320}(19,·)$, $\chi_{320}(149,·)$, $\chi_{320}(151,·)$, $\chi_{320}(281,·)$, $\chi_{320}(29,·)$, $\chi_{320}(31,·)$, $\chi_{320}(161,·)$, $\chi_{320}(41,·)$, $\chi_{320}(299,·)$, $\chi_{320}(179,·)$, $\chi_{320}(309,·)$, $\chi_{320}(311,·)$, $\chi_{320}(59,·)$, $\chi_{320}(189,·)$, $\chi_{320}(191,·)$, $\chi_{320}(69,·)$, $\chi_{320}(71,·)$, $\chi_{320}(201,·)$, $\chi_{320}(81,·)$, $\chi_{320}(219,·)$, $\chi_{320}(99,·)$, $\chi_{320}(229,·)$, $\chi_{320}(231,·)$, $\chi_{320}(109,·)$, $\chi_{320}(111,·)$, $\chi_{320}(241,·)$, $\chi_{320}(121,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{25} a^{5}$, $\frac{1}{125} a^{6}$, $\frac{1}{125} a^{7}$, $\frac{1}{625} a^{8}$, $\frac{1}{625} a^{9}$, $\frac{1}{3125} a^{10}$, $\frac{1}{3125} a^{11}$, $\frac{1}{15625} a^{12}$, $\frac{1}{15625} a^{13}$, $\frac{1}{78125} a^{14}$, $\frac{1}{78125} a^{15}$, $\frac{1}{390625} a^{16}$, $\frac{1}{390625} a^{17}$, $\frac{1}{1953125} a^{18}$, $\frac{1}{1953125} a^{19}$, $\frac{1}{9765625} a^{20}$, $\frac{1}{9765625} a^{21}$, $\frac{1}{48828125} a^{22}$, $\frac{1}{48828125} a^{23}$, $\frac{1}{244140625} a^{24}$, $\frac{1}{244140625} a^{25}$, $\frac{1}{1220703125} a^{26}$, $\frac{1}{1220703125} a^{27}$, $\frac{1}{6103515625} a^{28}$, $\frac{1}{6103515625} a^{29}$, $\frac{1}{30517578125} a^{30}$, $\frac{1}{30517578125} a^{31}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1}{78125} a^{14} \) (order $32$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{16}$ (as 32T32):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_{16}$
Character table for $C_2\times C_{16}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{8})\), \(\Q(\zeta_{16})^+\), 4.0.2048.2, \(\Q(\zeta_{16})\), \(\Q(\zeta_{32})^+\), 8.0.2147483648.1, \(\Q(\zeta_{32})\), 16.16.236118324143482260684800000000.1, 16.0.236118324143482260684800000000.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $16^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ $16^{2}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ $16^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ $16^{2}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ $16^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ $16^{2}$ $16^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
5Data not computed