Properties

Label 32.0.20328239244...0000.9
Degree $32$
Signature $[0, 16]$
Discriminant $2^{96}\cdot 3^{16}\cdot 5^{24}$
Root discriminant $46.33$
Ramified primes $2, 3, 5$
Class number Not computed
Class group Not computed
Galois group $C_2\times C_4^2$ (as 32T36)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![43046721, 0, 0, 0, 0, 0, 0, 0, -531441, 0, 0, 0, 0, 0, 0, 0, 6561, 0, 0, 0, 0, 0, 0, 0, -81, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 81*x^24 + 6561*x^16 - 531441*x^8 + 43046721)
 
gp: K = bnfinit(x^32 - 81*x^24 + 6561*x^16 - 531441*x^8 + 43046721, 1)
 

Normalized defining polynomial

\( x^{32} - 81 x^{24} + 6561 x^{16} - 531441 x^{8} + 43046721 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(203282392447840896882957090816000000000000000000000000=2^{96}\cdot 3^{16}\cdot 5^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $46.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(240=2^{4}\cdot 3\cdot 5\)
Dirichlet character group:    $\lbrace$$\chi_{240}(1,·)$, $\chi_{240}(131,·)$, $\chi_{240}(7,·)$, $\chi_{240}(11,·)$, $\chi_{240}(149,·)$, $\chi_{240}(151,·)$, $\chi_{240}(29,·)$, $\chi_{240}(31,·)$, $\chi_{240}(169,·)$, $\chi_{240}(173,·)$, $\chi_{240}(49,·)$, $\chi_{240}(179,·)$, $\chi_{240}(53,·)$, $\chi_{240}(59,·)$, $\chi_{240}(193,·)$, $\chi_{240}(197,·)$, $\chi_{240}(199,·)$, $\chi_{240}(73,·)$, $\chi_{240}(203,·)$, $\chi_{240}(77,·)$, $\chi_{240}(79,·)$, $\chi_{240}(83,·)$, $\chi_{240}(217,·)$, $\chi_{240}(221,·)$, $\chi_{240}(223,·)$, $\chi_{240}(97,·)$, $\chi_{240}(227,·)$, $\chi_{240}(101,·)$, $\chi_{240}(103,·)$, $\chi_{240}(107,·)$, $\chi_{240}(121,·)$, $\chi_{240}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{3} a^{2}$, $\frac{1}{3} a^{3}$, $\frac{1}{9} a^{4}$, $\frac{1}{9} a^{5}$, $\frac{1}{27} a^{6}$, $\frac{1}{27} a^{7}$, $\frac{1}{81} a^{8}$, $\frac{1}{81} a^{9}$, $\frac{1}{243} a^{10}$, $\frac{1}{243} a^{11}$, $\frac{1}{729} a^{12}$, $\frac{1}{729} a^{13}$, $\frac{1}{2187} a^{14}$, $\frac{1}{2187} a^{15}$, $\frac{1}{6561} a^{16}$, $\frac{1}{6561} a^{17}$, $\frac{1}{19683} a^{18}$, $\frac{1}{19683} a^{19}$, $\frac{1}{59049} a^{20}$, $\frac{1}{59049} a^{21}$, $\frac{1}{177147} a^{22}$, $\frac{1}{177147} a^{23}$, $\frac{1}{531441} a^{24}$, $\frac{1}{531441} a^{25}$, $\frac{1}{1594323} a^{26}$, $\frac{1}{1594323} a^{27}$, $\frac{1}{4782969} a^{28}$, $\frac{1}{4782969} a^{29}$, $\frac{1}{14348907} a^{30}$, $\frac{1}{14348907} a^{31}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1}{2187} a^{14} \) (order $40$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_4^2$ (as 32T36):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_4^2$
Character table for $C_2\times C_4^2$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\zeta_{8})\), 4.4.18432.1, 4.0.18432.2, \(\Q(i, \sqrt{10})\), \(\Q(i, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-5})\), 4.4.460800.1, 4.0.460800.2, \(\Q(\sqrt{-2}, \sqrt{-5})\), \(\Q(\sqrt{-2}, \sqrt{5})\), 4.0.2304000.2, 4.4.2304000.2, 4.0.2304000.1, 4.4.2304000.1, 4.0.8000.2, 4.4.8000.1, \(\Q(\zeta_{5})\), \(\Q(\zeta_{20})^+\), 8.0.1358954496.4, 8.0.40960000.1, 8.0.849346560000.6, 8.8.212336640000.1, 8.0.849346560000.5, 8.0.212336640000.5, 8.0.849346560000.3, 8.0.21233664000000.8, 8.0.21233664000000.7, 8.0.1024000000.2, \(\Q(\zeta_{20})\), 8.0.5308416000000.7, 8.8.5308416000000.1, 8.0.64000000.2, \(\Q(\zeta_{40})^+\), 8.0.21233664000000.6, 8.0.21233664000000.5, 8.0.1024000000.1, 8.0.64000000.1, 16.0.721389578983833600000000.1, 16.0.450868486864896000000000000.3, \(\Q(\zeta_{40})\), 16.0.28179280429056000000000000.3, 16.16.450868486864896000000000000.2, 16.0.450868486864896000000000000.7, 16.0.28179280429056000000000000.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{32}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5Data not computed