Normalized defining polynomial
\( x^{32} + 16 x^{30} + 152 x^{28} + 960 x^{26} + 4525 x^{24} + 16184 x^{22} + 45376 x^{20} + 98960 x^{18} + 169224 x^{16} + 220120 x^{14} + 215964 x^{12} + 146912 x^{10} + 67325 x^{8} + 13840 x^{6} + 1988 x^{4} + 48 x^{2} + 1 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(203282392447840896882957090816000000000000000000000000=2^{96}\cdot 3^{16}\cdot 5^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(240=2^{4}\cdot 3\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{240}(1,·)$, $\chi_{240}(7,·)$, $\chi_{240}(143,·)$, $\chi_{240}(149,·)$, $\chi_{240}(23,·)$, $\chi_{240}(29,·)$, $\chi_{240}(161,·)$, $\chi_{240}(163,·)$, $\chi_{240}(167,·)$, $\chi_{240}(41,·)$, $\chi_{240}(43,·)$, $\chi_{240}(47,·)$, $\chi_{240}(49,·)$, $\chi_{240}(181,·)$, $\chi_{240}(187,·)$, $\chi_{240}(61,·)$, $\chi_{240}(67,·)$, $\chi_{240}(203,·)$, $\chi_{240}(209,·)$, $\chi_{240}(83,·)$, $\chi_{240}(89,·)$, $\chi_{240}(221,·)$, $\chi_{240}(223,·)$, $\chi_{240}(227,·)$, $\chi_{240}(101,·)$, $\chi_{240}(103,·)$, $\chi_{240}(107,·)$, $\chi_{240}(109,·)$, $\chi_{240}(229,·)$, $\chi_{240}(169,·)$, $\chi_{240}(121,·)$, $\chi_{240}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{4} a^{24} + \frac{1}{4}$, $\frac{1}{4} a^{25} + \frac{1}{4} a$, $\frac{1}{4} a^{26} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{27} + \frac{1}{4} a^{3}$, $\frac{1}{796} a^{28} + \frac{21}{398} a^{26} - \frac{37}{398} a^{24} + \frac{49}{199} a^{22} - \frac{27}{199} a^{20} + \frac{54}{199} a^{18} - \frac{23}{199} a^{16} - \frac{66}{199} a^{14} + \frac{60}{199} a^{12} + \frac{99}{199} a^{10} - \frac{28}{199} a^{8} + \frac{43}{199} a^{6} - \frac{283}{796} a^{4} + \frac{139}{398} a^{2} + \frac{65}{398}$, $\frac{1}{796} a^{29} + \frac{21}{398} a^{27} - \frac{37}{398} a^{25} + \frac{49}{199} a^{23} - \frac{27}{199} a^{21} + \frac{54}{199} a^{19} - \frac{23}{199} a^{17} - \frac{66}{199} a^{15} + \frac{60}{199} a^{13} + \frac{99}{199} a^{11} - \frac{28}{199} a^{9} + \frac{43}{199} a^{7} - \frac{283}{796} a^{5} + \frac{139}{398} a^{3} + \frac{65}{398} a$, $\frac{1}{333597497567043560726236} a^{30} + \frac{87796179254378890773}{333597497567043560726236} a^{28} + \frac{19497399130015925822625}{166798748783521780363118} a^{26} + \frac{29958214754697442399175}{333597497567043560726236} a^{24} - \frac{34875794024636335040530}{83399374391760890181559} a^{22} - \frac{13120024048666742360491}{83399374391760890181559} a^{20} - \frac{21381019663800047697501}{83399374391760890181559} a^{18} + \frac{24075340688324064899797}{83399374391760890181559} a^{16} + \frac{24568004350965208923350}{83399374391760890181559} a^{14} + \frac{28151629611750261381421}{83399374391760890181559} a^{12} - \frac{38332562459166449982257}{83399374391760890181559} a^{10} + \frac{6405834782648254221753}{83399374391760890181559} a^{8} + \frac{15800649469478718075009}{333597497567043560726236} a^{6} + \frac{166302798908739396243241}{333597497567043560726236} a^{4} - \frac{72674952880381685031985}{166798748783521780363118} a^{2} + \frac{161424751778120864892991}{333597497567043560726236}$, $\frac{1}{333597497567043560726236} a^{31} + \frac{87796179254378890773}{333597497567043560726236} a^{29} + \frac{19497399130015925822625}{166798748783521780363118} a^{27} + \frac{29958214754697442399175}{333597497567043560726236} a^{25} - \frac{34875794024636335040530}{83399374391760890181559} a^{23} - \frac{13120024048666742360491}{83399374391760890181559} a^{21} - \frac{21381019663800047697501}{83399374391760890181559} a^{19} + \frac{24075340688324064899797}{83399374391760890181559} a^{17} + \frac{24568004350965208923350}{83399374391760890181559} a^{15} + \frac{28151629611750261381421}{83399374391760890181559} a^{13} - \frac{38332562459166449982257}{83399374391760890181559} a^{11} + \frac{6405834782648254221753}{83399374391760890181559} a^{9} + \frac{15800649469478718075009}{333597497567043560726236} a^{7} + \frac{166302798908739396243241}{333597497567043560726236} a^{5} - \frac{72674952880381685031985}{166798748783521780363118} a^{3} + \frac{161424751778120864892991}{333597497567043560726236} a$
Class group and class number
$C_{4}\times C_{8}\times C_{80}$, which has order $2560$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4366251400675137246941}{166798748783521780363118} a^{30} - \frac{139419596465868338323055}{333597497567043560726236} a^{28} - \frac{330649311330808604060600}{83399374391760890181559} a^{26} - \frac{4169267722004324704631585}{166798748783521780363118} a^{24} - \frac{9808880326525928344379500}{83399374391760890181559} a^{22} - \frac{35006374090433504431991038}{83399374391760890181559} a^{20} - \frac{97913368924490331152866680}{83399374391760890181559} a^{18} - \frac{212870332447547083767334180}{83399374391760890181559} a^{16} - \frac{362653308169359271622909280}{83399374391760890181559} a^{14} - \frac{469216208282469529517110860}{83399374391760890181559} a^{12} - \frac{457227468859736880583674912}{83399374391760890181559} a^{10} - \frac{307351339084823514267820220}{83399374391760890181559} a^{8} - \frac{277212667649755983508367585}{166798748783521780363118} a^{6} - \frac{107263433800862459772757275}{333597497567043560726236} a^{4} - \frac{4042882751195651204983510}{83399374391760890181559} a^{2} - \frac{28386804048725376514543}{166798748783521780363118} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48613521256.81357 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5 | Data not computed | ||||||