Properties

Label 32.0.20328239244...0000.5
Degree $32$
Signature $[0, 16]$
Discriminant $2^{96}\cdot 3^{16}\cdot 5^{24}$
Root discriminant $46.33$
Ramified primes $2, 3, 5$
Class number $640$ (GRH)
Class group $[8, 80]$ (GRH)
Galois group $C_2\times C_4^2$ (as 32T36)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 16, 0, 236, 0, 3464, 0, 50831, 0, 65552, 0, 59688, 0, 47152, 0, 34257, 0, 17024, 0, 7272, 0, 2776, 0, 911, 0, 208, 0, 44, 0, 8, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 8*x^30 + 44*x^28 + 208*x^26 + 911*x^24 + 2776*x^22 + 7272*x^20 + 17024*x^18 + 34257*x^16 + 47152*x^14 + 59688*x^12 + 65552*x^10 + 50831*x^8 + 3464*x^6 + 236*x^4 + 16*x^2 + 1)
 
gp: K = bnfinit(x^32 + 8*x^30 + 44*x^28 + 208*x^26 + 911*x^24 + 2776*x^22 + 7272*x^20 + 17024*x^18 + 34257*x^16 + 47152*x^14 + 59688*x^12 + 65552*x^10 + 50831*x^8 + 3464*x^6 + 236*x^4 + 16*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{32} + 8 x^{30} + 44 x^{28} + 208 x^{26} + 911 x^{24} + 2776 x^{22} + 7272 x^{20} + 17024 x^{18} + 34257 x^{16} + 47152 x^{14} + 59688 x^{12} + 65552 x^{10} + 50831 x^{8} + 3464 x^{6} + 236 x^{4} + 16 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(203282392447840896882957090816000000000000000000000000=2^{96}\cdot 3^{16}\cdot 5^{24}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $46.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(240=2^{4}\cdot 3\cdot 5\)
Dirichlet character group:    $\lbrace$$\chi_{240}(1,·)$, $\chi_{240}(131,·)$, $\chi_{240}(133,·)$, $\chi_{240}(11,·)$, $\chi_{240}(13,·)$, $\chi_{240}(143,·)$, $\chi_{240}(23,·)$, $\chi_{240}(157,·)$, $\chi_{240}(37,·)$, $\chi_{240}(167,·)$, $\chi_{240}(169,·)$, $\chi_{240}(47,·)$, $\chi_{240}(49,·)$, $\chi_{240}(179,·)$, $\chi_{240}(181,·)$, $\chi_{240}(59,·)$, $\chi_{240}(61,·)$, $\chi_{240}(191,·)$, $\chi_{240}(193,·)$, $\chi_{240}(71,·)$, $\chi_{240}(73,·)$, $\chi_{240}(203,·)$, $\chi_{240}(83,·)$, $\chi_{240}(217,·)$, $\chi_{240}(97,·)$, $\chi_{240}(227,·)$, $\chi_{240}(229,·)$, $\chi_{240}(107,·)$, $\chi_{240}(109,·)$, $\chi_{240}(239,·)$, $\chi_{240}(119,·)$, $\chi_{240}(121,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $\frac{1}{1041753338401} a^{26} + \frac{79843284091}{1041753338401} a^{24} + \frac{486571795735}{1041753338401} a^{22} + \frac{212202007274}{1041753338401} a^{20} - \frac{505807280647}{1041753338401} a^{18} - \frac{402287136637}{1041753338401} a^{16} + \frac{88417645693}{1041753338401} a^{14} + \frac{432555802638}{1041753338401} a^{12} - \frac{71680044697}{1041753338401} a^{10} - \frac{115313573804}{1041753338401} a^{8} + \frac{285663179810}{1041753338401} a^{6} - \frac{421135329286}{1041753338401} a^{4} + \frac{96513802723}{1041753338401} a^{2} + \frac{337948059055}{1041753338401}$, $\frac{1}{1041753338401} a^{27} + \frac{79843284091}{1041753338401} a^{25} + \frac{486571795735}{1041753338401} a^{23} + \frac{212202007274}{1041753338401} a^{21} - \frac{505807280647}{1041753338401} a^{19} - \frac{402287136637}{1041753338401} a^{17} + \frac{88417645693}{1041753338401} a^{15} + \frac{432555802638}{1041753338401} a^{13} - \frac{71680044697}{1041753338401} a^{11} - \frac{115313573804}{1041753338401} a^{9} + \frac{285663179810}{1041753338401} a^{7} - \frac{421135329286}{1041753338401} a^{5} + \frac{96513802723}{1041753338401} a^{3} + \frac{337948059055}{1041753338401} a$, $\frac{1}{1041753338401} a^{28} + \frac{25054628700}{1041753338401} a^{24} + \frac{110659118192}{1041753338401} a^{22} + \frac{384180371535}{1041753338401} a^{20} + \frac{402287135589}{1041753338401} a^{18} - \frac{16052180812}{1041753338401} a^{16} - \frac{323269475077}{1041753338401} a^{14} + \frac{270132982402}{1041753338401} a^{12} - \frac{366695375033}{1041753338401} a^{10} + \frac{284680379083}{1041753338401} a^{8} - \frac{119244722731}{1041753338401} a^{6} - \frac{282094818063}{1041753338401} a^{4} + \frac{334503429196}{1041753338401} a^{2} - \frac{125192178357}{1041753338401}$, $\frac{1}{1041753338401} a^{29} + \frac{25054628700}{1041753338401} a^{25} + \frac{110659118192}{1041753338401} a^{23} + \frac{384180371535}{1041753338401} a^{21} + \frac{402287135589}{1041753338401} a^{19} - \frac{16052180812}{1041753338401} a^{17} - \frac{323269475077}{1041753338401} a^{15} + \frac{270132982402}{1041753338401} a^{13} - \frac{366695375033}{1041753338401} a^{11} + \frac{284680379083}{1041753338401} a^{9} - \frac{119244722731}{1041753338401} a^{7} - \frac{282094818063}{1041753338401} a^{5} + \frac{334503429196}{1041753338401} a^{3} - \frac{125192178357}{1041753338401} a$, $\frac{1}{1041753338401} a^{30} + \frac{182905806350}{1041753338401} a^{20} + \frac{234369048594}{1041753338401} a^{10} - \frac{415161683759}{1041753338401}$, $\frac{1}{1041753338401} a^{31} + \frac{182905806350}{1041753338401} a^{21} + \frac{234369048594}{1041753338401} a^{11} - \frac{415161683759}{1041753338401} a$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{8}\times C_{80}$, which has order $640$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{171204088}{1041753338401} a^{30} - \frac{941622484}{1041753338401} a^{28} - \frac{4451306288}{1041753338401} a^{26} - \frac{19495865521}{1041753338401} a^{24} - \frac{81838660680}{1041753338401} a^{22} - \frac{155624515992}{1041753338401} a^{20} - \frac{364322299264}{1041753338401} a^{18} - \frac{733117305327}{1041753338401} a^{16} - \frac{1009076894672}{1041753338401} a^{14} + \frac{919609660376}{1041753338401} a^{12} - \frac{1402846297072}{1041753338401} a^{10} - \frac{1087809374641}{1041753338401} a^{8} - \frac{74131370104}{1041753338401} a^{6} - \frac{5050520596}{1041753338401} a^{4} - \frac{15286898838064}{1041753338401} a^{2} - \frac{21400511}{1041753338401} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 164479581001.023 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_4^2$ (as 32T36):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_4^2$
Character table for $C_2\times C_4^2$ is not computed

Intermediate fields

\(\Q(\sqrt{6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\zeta_{16})^+\), 4.4.18432.1, \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{10})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{15})\), 4.4.51200.1, 4.4.460800.1, \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{10})\), 4.0.72000.2, \(\Q(\zeta_{5})\), 4.0.18000.1, 4.0.8000.2, 4.0.2304000.2, 4.0.256000.4, 4.0.2304000.1, 4.0.256000.2, \(\Q(\zeta_{48})^+\), 8.8.3317760000.1, 8.8.849346560000.3, 8.8.2621440000.1, 8.8.849346560000.2, 8.8.212336640000.1, 8.8.849346560000.1, 8.0.5184000000.6, 8.0.82944000000.4, 8.0.21233664000000.3, 8.0.21233664000000.1, 8.0.82944000000.6, 8.0.64000000.2, 8.0.5308416000000.7, 8.0.65536000000.1, 8.0.82944000000.1, 8.0.324000000.3, 8.0.21233664000000.2, 8.0.21233664000000.4, 16.16.721389578983833600000000.1, 16.0.6879707136000000000000.4, 16.0.450868486864896000000000000.4, 16.0.450868486864896000000000000.13, 16.0.4294967296000000000000.1, 16.0.450868486864896000000000000.5, 16.0.28179280429056000000000000.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
5Data not computed