Normalized defining polynomial
\( x^{32} + 269 x^{24} + 5886 x^{16} + 1124 x^{8} + 1 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(203282392447840896882957090816000000000000000000000000=2^{96}\cdot 3^{16}\cdot 5^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(240=2^{4}\cdot 3\cdot 5\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{240}(1,·)$, $\chi_{240}(131,·)$, $\chi_{240}(133,·)$, $\chi_{240}(137,·)$, $\chi_{240}(11,·)$, $\chi_{240}(13,·)$, $\chi_{240}(143,·)$, $\chi_{240}(17,·)$, $\chi_{240}(149,·)$, $\chi_{240}(23,·)$, $\chi_{240}(29,·)$, $\chi_{240}(31,·)$, $\chi_{240}(163,·)$, $\chi_{240}(37,·)$, $\chi_{240}(167,·)$, $\chi_{240}(169,·)$, $\chi_{240}(43,·)$, $\chi_{240}(47,·)$, $\chi_{240}(49,·)$, $\chi_{240}(179,·)$, $\chi_{240}(59,·)$, $\chi_{240}(151,·)$, $\chi_{240}(67,·)$, $\chi_{240}(199,·)$, $\chi_{240}(79,·)$, $\chi_{240}(221,·)$, $\chi_{240}(187,·)$, $\chi_{240}(101,·)$, $\chi_{240}(233,·)$, $\chi_{240}(157,·)$, $\chi_{240}(113,·)$, $\chi_{240}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{8} + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{9} + \frac{1}{3} a$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{11} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{20} + \frac{1}{3} a^{12} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{21} + \frac{1}{3} a^{13} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{22} + \frac{1}{3} a^{14} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{23} + \frac{1}{3} a^{15} + \frac{1}{3} a^{7}$, $\frac{1}{14153403} a^{24} + \frac{111247}{4717801} a^{16} + \frac{1692283}{4717801} a^{8} - \frac{615799}{14153403}$, $\frac{1}{14153403} a^{25} + \frac{111247}{4717801} a^{17} + \frac{1692283}{4717801} a^{9} - \frac{615799}{14153403} a$, $\frac{1}{14153403} a^{26} + \frac{111247}{4717801} a^{18} + \frac{1692283}{4717801} a^{10} - \frac{615799}{14153403} a^{2}$, $\frac{1}{14153403} a^{27} + \frac{111247}{4717801} a^{19} + \frac{1692283}{4717801} a^{11} - \frac{615799}{14153403} a^{3}$, $\frac{1}{14153403} a^{28} + \frac{111247}{4717801} a^{20} + \frac{1692283}{4717801} a^{12} - \frac{615799}{14153403} a^{4}$, $\frac{1}{14153403} a^{29} + \frac{111247}{4717801} a^{21} + \frac{1692283}{4717801} a^{13} - \frac{615799}{14153403} a^{5}$, $\frac{1}{14153403} a^{30} + \frac{111247}{4717801} a^{22} + \frac{1692283}{4717801} a^{14} - \frac{615799}{14153403} a^{6}$, $\frac{1}{14153403} a^{31} + \frac{111247}{4717801} a^{23} + \frac{1692283}{4717801} a^{15} - \frac{615799}{14153403} a^{7}$
Class group and class number
$C_{2}\times C_{10}\times C_{20}$, which has order $400$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{804857}{4717801} a^{30} + \frac{649525640}{14153403} a^{22} + \frac{14213793260}{14153403} a^{14} + \frac{2750540720}{14153403} a^{6} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 631693271497.9135 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5 | Data not computed | ||||||