Normalized defining polynomial
\( x^{32} + 160 x^{30} + 11600 x^{28} + 504000 x^{26} + 14625000 x^{24} + 299000000 x^{22} + 4427500000 x^{20} + 48070000000 x^{18} + 383057812500 x^{16} + 2220625000000 x^{14} + 9185312500000 x^{12} + 26243750000000 x^{10} + 49207031250000 x^{8} + 55781250000000 x^{6} + 33203125000000 x^{4} + 7812500000000 x^{2} + 28500781250 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{125} a^{14}$, $\frac{1}{125} a^{15}$, $\frac{1}{539375} a^{16} + \frac{16}{107875} a^{14} - \frac{343}{107875} a^{12} + \frac{34}{21575} a^{10} + \frac{103}{21575} a^{8} + \frac{403}{4315} a^{6} - \frac{287}{4315} a^{4} + \frac{233}{863} a^{2} + \frac{387}{863}$, $\frac{1}{103020625} a^{17} - \frac{46586}{20604125} a^{15} - \frac{33137}{20604125} a^{13} - \frac{35349}{4120825} a^{11} + \frac{63102}{4120825} a^{9} + \frac{78073}{824165} a^{7} - \frac{63286}{824165} a^{5} + \frac{66684}{164833} a^{3} + \frac{79783}{164833} a$, $\frac{1}{103020625} a^{18} + \frac{18}{20604125} a^{16} + \frac{68857}{20604125} a^{14} + \frac{6233}{20604125} a^{12} + \frac{73798}{4120825} a^{10} - \frac{3859}{4120825} a^{8} + \frac{53797}{824165} a^{6} + \frac{49212}{824165} a^{4} - \frac{21447}{164833} a^{2} + \frac{79}{863}$, $\frac{1}{103020625} a^{19} - \frac{24061}{20604125} a^{15} + \frac{21569}{20604125} a^{13} - \frac{41452}{4120825} a^{11} - \frac{78717}{4120825} a^{9} - \frac{49787}{824165} a^{7} - \frac{24203}{824165} a^{5} + \frac{75814}{164833} a^{3} - \frac{77562}{164833} a$, $\frac{1}{515103125} a^{20} + \frac{1}{20604125} a^{16} - \frac{39196}{20604125} a^{14} - \frac{10888}{4120825} a^{12} - \frac{54631}{4120825} a^{10} - \frac{43484}{4120825} a^{8} + \frac{1577}{824165} a^{6} - \frac{14595}{164833} a^{4} - \frac{45423}{164833} a^{2} - \frac{429}{863}$, $\frac{1}{515103125} a^{21} + \frac{28901}{20604125} a^{15} - \frac{53588}{20604125} a^{13} - \frac{42719}{4120825} a^{11} - \frac{29328}{4120825} a^{9} - \frac{59122}{824165} a^{7} + \frac{78622}{824165} a^{5} - \frac{49177}{164833} a^{3} + \frac{13645}{164833} a$, $\frac{1}{515103125} a^{22} - \frac{82}{103020625} a^{16} - \frac{59318}{20604125} a^{14} - \frac{70154}{20604125} a^{12} - \frac{296}{4120825} a^{10} - \frac{4687}{824165} a^{8} - \frac{778}{164833} a^{6} + \frac{42334}{824165} a^{4} - \frac{49194}{164833} a^{2} - \frac{402}{863}$, $\frac{1}{515103125} a^{23} + \frac{76622}{20604125} a^{15} + \frac{14773}{20604125} a^{13} + \frac{13616}{824165} a^{11} + \frac{41106}{4120825} a^{9} - \frac{30391}{824165} a^{7} - \frac{7459}{164833} a^{5} - \frac{20595}{164833} a^{3} + \frac{36937}{164833} a$, $\frac{1}{2575515625} a^{24} + \frac{31}{103020625} a^{16} + \frac{63196}{20604125} a^{14} - \frac{34487}{20604125} a^{12} - \frac{24478}{4120825} a^{10} - \frac{1456}{824165} a^{8} - \frac{49861}{824165} a^{6} + \frac{38233}{824165} a^{4} - \frac{3385}{164833} a^{2} + \frac{153}{863}$, $\frac{1}{2575515625} a^{25} + \frac{4773}{4120825} a^{15} + \frac{3762}{20604125} a^{13} + \frac{82343}{4120825} a^{11} + \frac{14554}{4120825} a^{9} + \frac{2371}{824165} a^{7} + \frac{22103}{824165} a^{5} + \frac{72240}{164833} a^{3} + \frac{28445}{164833} a$, $\frac{1}{2575515625} a^{26} - \frac{2}{4120825} a^{16} + \frac{71758}{20604125} a^{14} - \frac{15743}{20604125} a^{12} + \frac{76629}{4120825} a^{10} + \frac{15741}{824165} a^{8} + \frac{45214}{824165} a^{6} + \frac{1379}{164833} a^{4} + \frac{70847}{164833} a^{2} - \frac{235}{863}$, $\frac{1}{2575515625} a^{27} + \frac{10024}{4120825} a^{15} - \frac{24263}{20604125} a^{13} - \frac{42491}{4120825} a^{11} - \frac{12571}{824165} a^{9} - \frac{7128}{824165} a^{7} - \frac{25578}{824165} a^{5} - \frac{56446}{164833} a^{3} - \frac{11727}{164833} a$, $\frac{1}{12877578125} a^{28} + \frac{78}{103020625} a^{16} + \frac{51607}{20604125} a^{14} - \frac{20717}{20604125} a^{12} - \frac{65669}{4120825} a^{10} - \frac{51631}{4120825} a^{8} - \frac{29449}{824165} a^{6} - \frac{34863}{824165} a^{4} + \frac{8045}{164833} a^{2} - \frac{423}{863}$, $\frac{1}{12877578125} a^{29} + \frac{58989}{20604125} a^{15} - \frac{73359}{20604125} a^{13} + \frac{2169}{164833} a^{11} - \frac{28597}{4120825} a^{9} - \frac{20322}{824165} a^{7} - \frac{8709}{164833} a^{5} + \frac{81349}{164833} a^{3} - \frac{40213}{164833} a$, $\frac{1}{12877578125} a^{30} + \frac{41}{103020625} a^{16} - \frac{11666}{20604125} a^{14} + \frac{50902}{20604125} a^{12} - \frac{104}{824165} a^{10} + \frac{17383}{4120825} a^{8} - \frac{45264}{824165} a^{6} - \frac{1927}{164833} a^{4} - \frac{17484}{164833} a^{2} - \frac{332}{863}$, $\frac{1}{12877578125} a^{31} - \frac{79636}{20604125} a^{15} - \frac{73978}{20604125} a^{13} - \frac{34708}{4120825} a^{11} + \frac{67529}{4120825} a^{9} + \frac{50403}{824165} a^{7} - \frac{52237}{824165} a^{5} + \frac{50633}{164833} a^{3} - \frac{37855}{164833} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 32 |
| The 32 conjugacy class representatives for $C_{32}$ |
| Character table for $C_{32}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\), 16.16.236118324143482260684800000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $32$ | R | $16^{2}$ | $32$ | $32$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{4}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $32$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||