Normalized defining polynomial
\( x^{32} + 160 x^{30} + 11600 x^{28} + 504000 x^{26} + 14625000 x^{24} + 299000000 x^{22} + 4427500000 x^{20} + 48070000000 x^{18} + 383057812500 x^{16} + 2220625000000 x^{14} + 9185312500000 x^{12} + 26243750000000 x^{10} + 49207031250000 x^{8} + 55781250000000 x^{6} + 33203125000000 x^{4} + 7812500000000 x^{2} + 581850781250 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5} a^{4}$, $\frac{1}{5} a^{5}$, $\frac{1}{5} a^{6}$, $\frac{1}{5} a^{7}$, $\frac{1}{25} a^{8}$, $\frac{1}{25} a^{9}$, $\frac{1}{25} a^{10}$, $\frac{1}{25} a^{11}$, $\frac{1}{125} a^{12}$, $\frac{1}{125} a^{13}$, $\frac{1}{125} a^{14}$, $\frac{1}{125} a^{15}$, $\frac{1}{119375} a^{16} + \frac{16}{23875} a^{14} - \frac{53}{23875} a^{12} + \frac{41}{4775} a^{10} + \frac{74}{4775} a^{8} - \frac{8}{955} a^{6} - \frac{4}{191} a^{4} - \frac{22}{191} a^{2} - \frac{87}{191}$, $\frac{1}{103020625} a^{17} + \frac{9324}{4120825} a^{15} + \frac{34327}{20604125} a^{13} + \frac{39769}{4120825} a^{11} - \frac{16352}{4120825} a^{9} - \frac{21973}{824165} a^{7} + \frac{76953}{824165} a^{5} - \frac{15684}{164833} a^{3} - \frac{58533}{164833} a$, $\frac{1}{103020625} a^{18} + \frac{18}{20604125} a^{16} - \frac{67507}{20604125} a^{14} + \frac{21067}{20604125} a^{12} - \frac{9448}{4120825} a^{10} - \frac{9028}{824165} a^{8} - \frac{36963}{824165} a^{6} - \frac{33544}{824165} a^{4} - \frac{42136}{164833} a^{2} - \frac{3}{191}$, $\frac{1}{103020625} a^{19} + \frac{22351}{20604125} a^{15} + \frac{63464}{20604125} a^{13} + \frac{37668}{4120825} a^{11} - \frac{56957}{4120825} a^{9} - \frac{37389}{824165} a^{7} - \frac{36328}{824165} a^{5} + \frac{50760}{164833} a^{3} - \frac{9275}{164833} a$, $\frac{1}{515103125} a^{20} - \frac{87}{103020625} a^{16} + \frac{49284}{20604125} a^{14} + \frac{73051}{20604125} a^{12} + \frac{24682}{4120825} a^{10} - \frac{49471}{4120825} a^{8} + \frac{40372}{824165} a^{6} + \frac{5021}{824165} a^{4} - \frac{2718}{164833} a^{2} - \frac{30}{191}$, $\frac{1}{515103125} a^{21} - \frac{15601}{20604125} a^{15} - \frac{72327}{20604125} a^{13} + \frac{23092}{4120825} a^{11} + \frac{11402}{4120825} a^{9} - \frac{58116}{824165} a^{7} - \frac{58221}{824165} a^{5} - \frac{48562}{164833} a^{3} - \frac{8438}{164833} a$, $\frac{1}{515103125} a^{22} - \frac{67}{20604125} a^{16} + \frac{16562}{20604125} a^{14} - \frac{45058}{20604125} a^{12} + \frac{12809}{824165} a^{10} + \frac{17511}{4120825} a^{8} - \frac{20249}{824165} a^{6} + \frac{16953}{824165} a^{4} - \frac{68848}{164833} a^{2} + \frac{1}{191}$, $\frac{1}{515103125} a^{23} - \frac{24873}{20604125} a^{15} + \frac{16202}{4120825} a^{13} + \frac{35187}{4120825} a^{11} - \frac{4184}{824165} a^{9} + \frac{36281}{824165} a^{7} + \frac{16452}{164833} a^{5} - \frac{48332}{164833} a^{3} + \frac{7435}{164833} a$, $\frac{1}{2575515625} a^{24} + \frac{154}{103020625} a^{16} - \frac{15573}{4120825} a^{14} + \frac{5484}{4120825} a^{12} + \frac{1317}{164833} a^{10} + \frac{75116}{4120825} a^{8} - \frac{18931}{824165} a^{6} - \frac{54373}{824165} a^{4} - \frac{54608}{164833} a^{2} - \frac{40}{191}$, $\frac{1}{2575515625} a^{25} - \frac{4693}{20604125} a^{15} + \frac{15718}{20604125} a^{13} + \frac{1464}{824165} a^{11} - \frac{44004}{4120825} a^{9} + \frac{68251}{824165} a^{7} - \frac{37159}{824165} a^{5} + \frac{53066}{164833} a^{3} + \frac{78580}{164833} a$, $\frac{1}{2575515625} a^{26} - \frac{164}{103020625} a^{16} + \frac{58868}{20604125} a^{14} - \frac{44522}{20604125} a^{12} - \frac{77661}{4120825} a^{10} - \frac{3092}{164833} a^{8} - \frac{58734}{824165} a^{6} - \frac{35857}{824165} a^{4} + \frac{60457}{164833} a^{2} - \frac{57}{191}$, $\frac{1}{2575515625} a^{27} - \frac{42603}{20604125} a^{15} - \frac{19216}{20604125} a^{13} + \frac{15968}{4120825} a^{11} + \frac{43133}{4120825} a^{9} - \frac{7196}{164833} a^{7} + \frac{57127}{824165} a^{5} - \frac{39224}{164833} a^{3} + \frac{76544}{164833} a$, $\frac{1}{12877578125} a^{28} - \frac{316}{103020625} a^{16} + \frac{3174}{824165} a^{14} - \frac{82414}{20604125} a^{12} + \frac{61097}{4120825} a^{10} - \frac{38569}{4120825} a^{8} + \frac{35762}{824165} a^{6} - \frac{60799}{824165} a^{4} - \frac{24907}{164833} a^{2} - \frac{61}{191}$, $\frac{1}{12877578125} a^{29} - \frac{948}{824165} a^{15} + \frac{50773}{20604125} a^{13} - \frac{12808}{824165} a^{11} + \frac{13771}{824165} a^{9} + \frac{16}{863} a^{7} + \frac{25898}{824165} a^{5} - \frac{36061}{164833} a^{3} + \frac{77058}{164833} a$, $\frac{1}{12877578125} a^{30} - \frac{269}{103020625} a^{16} - \frac{35527}{20604125} a^{14} + \frac{6877}{20604125} a^{12} - \frac{28664}{4120825} a^{10} - \frac{75488}{4120825} a^{8} + \frac{69048}{824165} a^{6} - \frac{14486}{164833} a^{4} - \frac{51529}{164833} a^{2} - \frac{77}{191}$, $\frac{1}{12877578125} a^{31} - \frac{4411}{4120825} a^{15} + \frac{10192}{20604125} a^{13} - \frac{44948}{4120825} a^{11} - \frac{4737}{824165} a^{9} - \frac{72534}{824165} a^{7} + \frac{23802}{824165} a^{5} + \frac{15133}{164833} a^{3} + \frac{12140}{164833} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 32 |
| The 32 conjugacy class representatives for $C_{32}$ |
| Character table for $C_{32}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{32})^+\), 16.16.236118324143482260684800000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $32$ | R | $16^{2}$ | $32$ | $32$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{4}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | $32$ | $16^{2}$ | $32$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{4}$ | $32$ | $32$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||