Normalized defining polynomial
\( x^{32} - x^{31} + 23 x^{30} - 12 x^{29} + 329 x^{28} - 122 x^{27} + 2779 x^{26} - 327 x^{25} + 16520 x^{24} - 338 x^{23} + 64543 x^{22} + 7650 x^{21} + 180555 x^{20} + 24855 x^{19} + 346044 x^{18} + 50946 x^{17} + 490499 x^{16} + 64136 x^{15} + 494181 x^{14} + 64009 x^{13} + 369102 x^{12} + 46478 x^{11} + 187873 x^{10} + 28296 x^{9} + 67299 x^{8} + 9995 x^{7} + 13558 x^{6} + 2674 x^{5} + 1791 x^{4} + 184 x^{3} + 62 x^{2} - 4 x + 1 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(186221552718646678775874367536462493032617340087890625=3^{16}\cdot 5^{16}\cdot 17^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(255=3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{255}(1,·)$, $\chi_{255}(4,·)$, $\chi_{255}(134,·)$, $\chi_{255}(16,·)$, $\chi_{255}(19,·)$, $\chi_{255}(149,·)$, $\chi_{255}(151,·)$, $\chi_{255}(26,·)$, $\chi_{255}(154,·)$, $\chi_{255}(161,·)$, $\chi_{255}(166,·)$, $\chi_{255}(169,·)$, $\chi_{255}(49,·)$, $\chi_{255}(179,·)$, $\chi_{255}(59,·)$, $\chi_{255}(191,·)$, $\chi_{255}(64,·)$, $\chi_{255}(196,·)$, $\chi_{255}(76,·)$, $\chi_{255}(206,·)$, $\chi_{255}(86,·)$, $\chi_{255}(89,·)$, $\chi_{255}(94,·)$, $\chi_{255}(101,·)$, $\chi_{255}(229,·)$, $\chi_{255}(104,·)$, $\chi_{255}(106,·)$, $\chi_{255}(236,·)$, $\chi_{255}(239,·)$, $\chi_{255}(121,·)$, $\chi_{255}(251,·)$, $\chi_{255}(254,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{24} - \frac{1}{4} a^{18} - \frac{1}{4} a^{12} - \frac{1}{2} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4}$, $\frac{1}{4} a^{25} - \frac{1}{4} a^{19} - \frac{1}{4} a^{13} - \frac{1}{2} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{4} a^{26} - \frac{1}{4} a^{20} - \frac{1}{4} a^{14} - \frac{1}{2} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{27} - \frac{1}{4} a^{21} - \frac{1}{4} a^{15} + \frac{1}{4} a^{9} - \frac{1}{2} a^{6} + \frac{1}{4} a^{3} - \frac{1}{2}$, $\frac{1}{188} a^{28} + \frac{5}{188} a^{27} - \frac{15}{188} a^{26} - \frac{3}{47} a^{24} - \frac{1}{47} a^{23} + \frac{31}{188} a^{22} - \frac{3}{188} a^{21} - \frac{29}{188} a^{20} + \frac{21}{94} a^{19} - \frac{23}{94} a^{18} + \frac{4}{47} a^{17} - \frac{21}{188} a^{16} - \frac{33}{188} a^{15} - \frac{33}{188} a^{14} + \frac{4}{47} a^{13} - \frac{10}{47} a^{12} + \frac{7}{94} a^{11} - \frac{51}{188} a^{10} + \frac{61}{188} a^{9} - \frac{65}{188} a^{8} - \frac{23}{94} a^{7} - \frac{23}{47} a^{6} + \frac{22}{47} a^{5} + \frac{59}{188} a^{4} - \frac{61}{188} a^{3} + \frac{91}{188} a^{2} + \frac{35}{94} a + \frac{23}{94}$, $\frac{1}{188} a^{29} + \frac{7}{188} a^{27} - \frac{19}{188} a^{26} - \frac{3}{47} a^{25} + \frac{9}{188} a^{24} - \frac{43}{188} a^{23} + \frac{15}{94} a^{22} + \frac{33}{188} a^{21} - \frac{1}{188} a^{20} + \frac{13}{94} a^{19} + \frac{11}{188} a^{18} - \frac{7}{188} a^{17} - \frac{11}{94} a^{16} - \frac{9}{188} a^{15} - \frac{7}{188} a^{14} - \frac{13}{94} a^{13} - \frac{21}{188} a^{12} - \frac{27}{188} a^{11} + \frac{17}{94} a^{10} + \frac{53}{188} a^{9} - \frac{3}{188} a^{8} + \frac{11}{47} a^{7} - \frac{63}{188} a^{6} - \frac{5}{188} a^{5} + \frac{5}{47} a^{4} + \frac{67}{188} a^{3} + \frac{85}{188} a^{2} + \frac{18}{47} a - \frac{89}{188}$, $\frac{1}{8917714962141037156} a^{30} - \frac{13684232734587351}{8917714962141037156} a^{29} - \frac{187919616363481}{2229428740535259289} a^{28} + \frac{462134890013706903}{8917714962141037156} a^{27} - \frac{104551188913173075}{8917714962141037156} a^{26} - \frac{77561511962948555}{8917714962141037156} a^{25} - \frac{775120587387181167}{8917714962141037156} a^{24} - \frac{559559220237530639}{8917714962141037156} a^{23} - \frac{5164869785921548}{47434654053941687} a^{22} - \frac{1585611064367090937}{8917714962141037156} a^{21} + \frac{951156303944434161}{8917714962141037156} a^{20} - \frac{12636102215634753}{8917714962141037156} a^{19} + \frac{1992322241138876609}{8917714962141037156} a^{18} + \frac{298576119357280377}{8917714962141037156} a^{17} + \frac{4841162222930637}{94869308107883374} a^{16} + \frac{28994870494930979}{8917714962141037156} a^{15} + \frac{1304165479883795253}{8917714962141037156} a^{14} + \frac{1916152699242410821}{8917714962141037156} a^{13} + \frac{1096991895101777065}{8917714962141037156} a^{12} - \frac{3160697357333510827}{8917714962141037156} a^{11} - \frac{926121646083071467}{2229428740535259289} a^{10} + \frac{3797681093834689823}{8917714962141037156} a^{9} - \frac{4237380666717256443}{8917714962141037156} a^{8} + \frac{2212223650356178869}{8917714962141037156} a^{7} + \frac{3151963145991898861}{8917714962141037156} a^{6} - \frac{2518355984190439859}{8917714962141037156} a^{5} + \frac{1246749091243979897}{4458857481070518578} a^{4} - \frac{2658093013936379969}{8917714962141037156} a^{3} + \frac{725213211001218293}{8917714962141037156} a^{2} - \frac{1594306239932223369}{8917714962141037156} a + \frac{202397835938063495}{2229428740535259289}$, $\frac{1}{27844693362534749437634760664619689943375785856596} a^{31} + \frac{818476907587350441926692763527}{27844693362534749437634760664619689943375785856596} a^{30} + \frac{1425155984811305331819482245617835746198655102}{6961173340633687359408690166154922485843946464149} a^{29} + \frac{10678518230629474269038331968247856887548467105}{27844693362534749437634760664619689943375785856596} a^{28} - \frac{426379954280061094140813921849513332147629930395}{13922346681267374718817380332309844971687892928298} a^{27} - \frac{1734450349921338780240702850512376616995717438399}{13922346681267374718817380332309844971687892928298} a^{26} - \frac{3387785943268954200977253515941647619816662880453}{27844693362534749437634760664619689943375785856596} a^{25} - \frac{2905159913779165341746174862547804709525443382441}{27844693362534749437634760664619689943375785856596} a^{24} - \frac{65176991531816180685861049794265932387624113139}{6961173340633687359408690166154922485843946464149} a^{23} + \frac{1241796409084552158993860835265798524245690527955}{27844693362534749437634760664619689943375785856596} a^{22} + \frac{1638952373987559082053340572638919187914629400099}{6961173340633687359408690166154922485843946464149} a^{21} - \frac{3161576273800712948692340948567233995452353581951}{13922346681267374718817380332309844971687892928298} a^{20} - \frac{1174187353864229455753407094483976397270327775905}{27844693362534749437634760664619689943375785856596} a^{19} + \frac{1066001918716406373060341908365700228760196256061}{27844693362534749437634760664619689943375785856596} a^{18} - \frac{21832809847360281736445547339919363524019066319}{135168414381236647755508546915629562831921290566} a^{17} - \frac{6646354417017005612333573650437422258385469208091}{27844693362534749437634760664619689943375785856596} a^{16} + \frac{409759915085617353641977923624777319464594239906}{6961173340633687359408690166154922485843946464149} a^{15} + \frac{1174760153857376495408422145678018407275368942696}{6961173340633687359408690166154922485843946464149} a^{14} - \frac{6029494922322361101292820768730971483564196270075}{27844693362534749437634760664619689943375785856596} a^{13} - \frac{2826932069213476714433424354748896570626437953451}{27844693362534749437634760664619689943375785856596} a^{12} + \frac{6502734319407035724982308781231566398212262603261}{13922346681267374718817380332309844971687892928298} a^{11} + \frac{7750957978499176535260471035044289169229067434787}{27844693362534749437634760664619689943375785856596} a^{10} + \frac{3294463635329185005537416920990163267016501708625}{6961173340633687359408690166154922485843946464149} a^{9} + \frac{648115107890303777960854800882250647099802151891}{6961173340633687359408690166154922485843946464149} a^{8} + \frac{12103034179236845559907395783431442189470035707087}{27844693362534749437634760664619689943375785856596} a^{7} + \frac{41428380773579717946718601816303720207245175021}{90699326913793972109559480992246547046826664028} a^{6} + \frac{792168491353952763387572874468564591894930128953}{13922346681267374718817380332309844971687892928298} a^{5} - \frac{7053027669535474055101089793502449039120497595737}{27844693362534749437634760664619689943375785856596} a^{4} + \frac{4021078362971770089921086834913941434106123590659}{13922346681267374718817380332309844971687892928298} a^{3} + \frac{3250734369971017115670091329254693145990301487889}{13922346681267374718817380332309844971687892928298} a^{2} + \frac{1878552601739869158048778956642092926826159890752}{6961173340633687359408690166154922485843946464149} a + \frac{3329818865389917415371254552636308323719878660}{535474872356437489185283858934994037372611266473}$
Class group and class number
$C_{2040}$, which has order $2040$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{298645634274941971178703072668392056786645}{3568955800412968998594032627962117247016731} a^{31} + \frac{905224901404256777243461065177306532946023}{14275823201651875994376130511848468988066924} a^{30} - \frac{27161252639963989134722848181898232487959609}{14275823201651875994376130511848468988066924} a^{29} + \frac{7668622559643726792438903963277065504911607}{14275823201651875994376130511848468988066924} a^{28} - \frac{97246981692799824761374878886238579608107236}{3568955800412968998594032627962117247016731} a^{27} + \frac{25276398177358375400255780203680537362008607}{7137911600825937997188065255924234494033462} a^{26} - \frac{3276427262323453479991819833227753239797826653}{14275823201651875994376130511848468988066924} a^{25} - \frac{4384162715250273465186629841952992102422171}{151870459592041233982724792679239031787946} a^{24} - \frac{19572325318284888547704873773129506689669899509}{14275823201651875994376130511848468988066924} a^{23} - \frac{4347698515337263449619952634491740637918141107}{14275823201651875994376130511848468988066924} a^{22} - \frac{19149067654953303852696086917067746023518104332}{3568955800412968998594032627962117247016731} a^{21} - \frac{13802989248210558440807207984750691390723798057}{7137911600825937997188065255924234494033462} a^{20} - \frac{216291018982861737061446317187260744462724142913}{14275823201651875994376130511848468988066924} a^{19} - \frac{20228592292180471072530715508717038940789496762}{3568955800412968998594032627962117247016731} a^{18} - \frac{415936679302621057161726966965358969220562834611}{14275823201651875994376130511848468988066924} a^{17} - \frac{158086769775180028445477930791123825756843973477}{14275823201651875994376130511848468988066924} a^{16} - \frac{147912803375990889329214496702163210895877930230}{3568955800412968998594032627962117247016731} a^{15} - \frac{106522729932167494985738062234647028461764066261}{7137911600825937997188065255924234494033462} a^{14} - \frac{595874413312939086760418113746796916352716952487}{14275823201651875994376130511848468988066924} a^{13} - \frac{53017585943776490225573982239425339886761931379}{3568955800412968998594032627962117247016731} a^{12} - \frac{446150951181574613211158045930876563182978495093}{14275823201651875994376130511848468988066924} a^{11} - \frac{155230197875011730200997869827426527302625571991}{14275823201651875994376130511848468988066924} a^{10} - \frac{113879849850586919930602648995695502322491532699}{7137911600825937997188065255924234494033462} a^{9} - \frac{41576176734028776209941354620981659460988489229}{7137911600825937997188065255924234494033462} a^{8} - \frac{83287392282502206752983751232121184722856507185}{14275823201651875994376130511848468988066924} a^{7} - \frac{7247693422549006291272788558351400261831263196}{3568955800412968998594032627962117247016731} a^{6} - \frac{17087742441795037244298011782202805432040679877}{14275823201651875994376130511848468988066924} a^{5} - \frac{6334869749614727178432626128466430863603579463}{14275823201651875994376130511848468988066924} a^{4} - \frac{47887102825267382777354846455089761071380172}{274535061570228384507233279074009019001287} a^{3} - \frac{157518929273454653292089707381838564218533437}{3568955800412968998594032627962117247016731} a^{2} - \frac{65396898248455572973505462341992025793093495}{14275823201651875994376130511848468988066924} a + \frac{2776519760477847458865363517840746723725577}{14275823201651875994376130511848468988066924} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42597284566.379654 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{8}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||