Normalized defining polynomial
\( x^{32} + 45 x^{30} + 862 x^{28} + 9243 x^{26} + 61576 x^{24} + 268554 x^{22} + 790441 x^{20} + 1599264 x^{18} + 2244206 x^{16} + 2182743 x^{14} + 1454308 x^{12} + 646998 x^{10} + 183789 x^{8} + 30996 x^{6} + 2766 x^{4} + 108 x^{2} + 1 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(18580171965640016453782803163423074549760000000000000000=2^{32}\cdot 5^{16}\cdot 17^{28}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(340=2^{2}\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{340}(1,·)$, $\chi_{340}(259,·)$, $\chi_{340}(9,·)$, $\chi_{340}(271,·)$, $\chi_{340}(19,·)$, $\chi_{340}(149,·)$, $\chi_{340}(151,·)$, $\chi_{340}(281,·)$, $\chi_{340}(111,·)$, $\chi_{340}(161,·)$, $\chi_{340}(291,·)$, $\chi_{340}(169,·)$, $\chi_{340}(171,·)$, $\chi_{340}(49,·)$, $\chi_{340}(179,·)$, $\chi_{340}(59,·)$, $\chi_{340}(189,·)$, $\chi_{340}(319,·)$, $\chi_{340}(321,·)$, $\chi_{340}(69,·)$, $\chi_{340}(331,·)$, $\chi_{340}(81,·)$, $\chi_{340}(339,·)$, $\chi_{340}(89,·)$, $\chi_{340}(219,·)$, $\chi_{340}(101,·)$, $\chi_{340}(229,·)$, $\chi_{340}(191,·)$, $\chi_{340}(239,·)$, $\chi_{340}(121,·)$, $\chi_{340}(251,·)$, $\chi_{340}(21,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{4} a^{24} - \frac{1}{4} a^{18} + \frac{1}{4} a^{12} - \frac{1}{4} a^{6} + \frac{1}{4}$, $\frac{1}{4} a^{25} - \frac{1}{4} a^{19} + \frac{1}{4} a^{13} - \frac{1}{4} a^{7} + \frac{1}{4} a$, $\frac{1}{4} a^{26} - \frac{1}{4} a^{20} + \frac{1}{4} a^{14} - \frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{27} - \frac{1}{4} a^{21} + \frac{1}{4} a^{15} - \frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{52} a^{28} + \frac{1}{52} a^{26} - \frac{25}{52} a^{22} + \frac{3}{52} a^{20} + \frac{3}{13} a^{18} - \frac{3}{52} a^{16} + \frac{5}{52} a^{14} - \frac{3}{13} a^{12} - \frac{9}{52} a^{10} - \frac{21}{52} a^{8} - \frac{5}{13} a^{6} + \frac{9}{52} a^{4} + \frac{17}{52} a^{2} + \frac{3}{13}$, $\frac{1}{52} a^{29} + \frac{1}{52} a^{27} - \frac{25}{52} a^{23} + \frac{3}{52} a^{21} + \frac{3}{13} a^{19} - \frac{3}{52} a^{17} + \frac{5}{52} a^{15} - \frac{3}{13} a^{13} - \frac{9}{52} a^{11} - \frac{21}{52} a^{9} - \frac{5}{13} a^{7} + \frac{9}{52} a^{5} + \frac{17}{52} a^{3} + \frac{3}{13} a$, $\frac{1}{19272221147269928396} a^{30} - \frac{59661768747063517}{19272221147269928396} a^{28} + \frac{33914837478637707}{410047258452551668} a^{26} + \frac{1774089738157225373}{19272221147269928396} a^{24} + \frac{6473372205320994981}{19272221147269928396} a^{22} - \frac{4323469358533678121}{19272221147269928396} a^{20} + \frac{5489820163329942147}{19272221147269928396} a^{18} + \frac{7725559353790145575}{19272221147269928396} a^{16} - \frac{3550216724134984571}{19272221147269928396} a^{14} + \frac{5530223213172151541}{19272221147269928396} a^{12} + \frac{3143127382590898165}{19272221147269928396} a^{10} - \frac{40678737813443785}{1482478549789994492} a^{8} - \frac{1496621818872491317}{19272221147269928396} a^{6} - \frac{1278383477724446001}{19272221147269928396} a^{4} + \frac{3696283003862871853}{19272221147269928396} a^{2} - \frac{306331683232852383}{9636110573634964198}$, $\frac{1}{19272221147269928396} a^{31} - \frac{59661768747063517}{19272221147269928396} a^{29} + \frac{33914837478637707}{410047258452551668} a^{27} + \frac{1774089738157225373}{19272221147269928396} a^{25} + \frac{6473372205320994981}{19272221147269928396} a^{23} - \frac{4323469358533678121}{19272221147269928396} a^{21} + \frac{5489820163329942147}{19272221147269928396} a^{19} + \frac{7725559353790145575}{19272221147269928396} a^{17} - \frac{3550216724134984571}{19272221147269928396} a^{15} + \frac{5530223213172151541}{19272221147269928396} a^{13} + \frac{3143127382590898165}{19272221147269928396} a^{11} - \frac{40678737813443785}{1482478549789994492} a^{9} - \frac{1496621818872491317}{19272221147269928396} a^{7} - \frac{1278383477724446001}{19272221147269928396} a^{5} + \frac{3696283003862871853}{19272221147269928396} a^{3} - \frac{306331683232852383}{9636110573634964198} a$
Class group and class number
$C_{8}\times C_{40}\times C_{40}$, which has order $12800$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{886567745}{105114502246} a^{31} + \frac{17320661715}{52557251123} a^{29} + \frac{261162985480}{52557251123} a^{27} + \frac{1715973249600}{52557251123} a^{25} + \frac{924165859335}{52557251123} a^{23} - \frac{63121376165020}{52557251123} a^{21} - \frac{474376200895120}{52557251123} a^{19} - \frac{138454102983779}{4042865471} a^{17} - \frac{4183093886048251}{52557251123} a^{15} - \frac{6267744733089928}{52557251123} a^{13} - \frac{6101272329495281}{52557251123} a^{11} - \frac{3783049704728980}{52557251123} a^{9} - \frac{1422312131319436}{52557251123} a^{7} - \frac{295014846552523}{52557251123} a^{5} - \frac{28032355700892}{52557251123} a^{3} - \frac{1557128623363}{105114502246} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 42597284566.379654 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_8$ (as 32T37):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^2\times C_8$ |
| Character table for $C_2^2\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 5 | Data not computed | ||||||
| 17 | Data not computed | ||||||