Normalized defining polynomial
\( x^{32} + 80 x^{30} + 2744 x^{28} + 53120 x^{26} + 644748 x^{24} + 5172960 x^{22} + 28278912 x^{20} + 107218880 x^{18} + 283997723 x^{16} + 523451648 x^{14} + 659656088 x^{12} + 548056352 x^{10} + 280891560 x^{8} + 78474144 x^{6} + 9153840 x^{4} + 160256 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{69} a^{24} + \frac{13}{69} a^{22} + \frac{26}{69} a^{20} + \frac{26}{69} a^{18} - \frac{10}{69} a^{16} + \frac{2}{23} a^{14} + \frac{9}{23} a^{12} + \frac{2}{23} a^{10} - \frac{2}{69} a^{8} + \frac{4}{69} a^{6} + \frac{5}{69} a^{4} - \frac{10}{69} a^{2} - \frac{10}{69}$, $\frac{1}{69} a^{25} + \frac{13}{69} a^{23} + \frac{26}{69} a^{21} + \frac{26}{69} a^{19} - \frac{10}{69} a^{17} + \frac{2}{23} a^{15} + \frac{9}{23} a^{13} + \frac{2}{23} a^{11} - \frac{2}{69} a^{9} + \frac{4}{69} a^{7} + \frac{5}{69} a^{5} - \frac{10}{69} a^{3} - \frac{10}{69} a$, $\frac{1}{69} a^{26} - \frac{5}{69} a^{22} + \frac{11}{23} a^{20} - \frac{1}{23} a^{18} - \frac{2}{69} a^{16} + \frac{6}{23} a^{14} - \frac{11}{69} a^{10} + \frac{10}{23} a^{8} + \frac{22}{69} a^{6} - \frac{2}{23} a^{4} - \frac{6}{23} a^{2} - \frac{8}{69}$, $\frac{1}{69} a^{27} - \frac{5}{69} a^{23} + \frac{11}{23} a^{21} - \frac{1}{23} a^{19} - \frac{2}{69} a^{17} + \frac{6}{23} a^{15} - \frac{11}{69} a^{11} + \frac{10}{23} a^{9} + \frac{22}{69} a^{7} - \frac{2}{23} a^{5} - \frac{6}{23} a^{3} - \frac{8}{69} a$, $\frac{1}{16833723} a^{28} - \frac{7365}{5611241} a^{26} - \frac{33686}{16833723} a^{24} + \frac{107422}{330073} a^{22} - \frac{1210642}{5611241} a^{20} + \frac{1807333}{16833723} a^{18} - \frac{62117}{243967} a^{16} + \frac{2524970}{5611241} a^{14} + \frac{2620}{132549} a^{12} + \frac{2234382}{5611241} a^{10} - \frac{6980519}{16833723} a^{8} - \frac{1533787}{5611241} a^{6} + \frac{1429850}{5611241} a^{4} - \frac{6315632}{16833723} a^{2} + \frac{538914}{5611241}$, $\frac{1}{16833723} a^{29} - \frac{7365}{5611241} a^{27} - \frac{33686}{16833723} a^{25} + \frac{107422}{330073} a^{23} - \frac{1210642}{5611241} a^{21} + \frac{1807333}{16833723} a^{19} - \frac{62117}{243967} a^{17} + \frac{2524970}{5611241} a^{15} + \frac{2620}{132549} a^{13} + \frac{2234382}{5611241} a^{11} - \frac{6980519}{16833723} a^{9} - \frac{1533787}{5611241} a^{7} + \frac{1429850}{5611241} a^{5} - \frac{6315632}{16833723} a^{3} + \frac{538914}{5611241} a$, $\frac{1}{31626682583370470426178280347} a^{30} - \frac{588385733212756664104}{31626682583370470426178280347} a^{28} - \frac{4707839059541197162751907}{10542227527790156808726093449} a^{26} + \frac{177118216990599220013870923}{31626682583370470426178280347} a^{24} - \frac{1058430518074083961220257367}{31626682583370470426178280347} a^{22} + \frac{2257021246579339047762759014}{31626682583370470426178280347} a^{20} - \frac{3309098614387289213300666991}{10542227527790156808726093449} a^{18} - \frac{528343277662332159542528728}{10542227527790156808726093449} a^{16} + \frac{11138562637146541383961741036}{31626682583370470426178280347} a^{14} + \frac{15485461176940138275779430623}{31626682583370470426178280347} a^{12} + \frac{483728415539866272838107012}{10542227527790156808726093449} a^{10} + \frac{3372368629505165775274822474}{31626682583370470426178280347} a^{8} - \frac{6972901853652496384006991708}{31626682583370470426178280347} a^{6} + \frac{3363699504020606263474473209}{31626682583370470426178280347} a^{4} + \frac{122794872054446801656325191}{10542227527790156808726093449} a^{2} - \frac{3924797260107352215359943435}{10542227527790156808726093449}$, $\frac{1}{31626682583370470426178280347} a^{31} - \frac{588385733212756664104}{31626682583370470426178280347} a^{29} - \frac{4707839059541197162751907}{10542227527790156808726093449} a^{27} + \frac{177118216990599220013870923}{31626682583370470426178280347} a^{25} - \frac{1058430518074083961220257367}{31626682583370470426178280347} a^{23} + \frac{2257021246579339047762759014}{31626682583370470426178280347} a^{21} - \frac{3309098614387289213300666991}{10542227527790156808726093449} a^{19} - \frac{528343277662332159542528728}{10542227527790156808726093449} a^{17} + \frac{11138562637146541383961741036}{31626682583370470426178280347} a^{15} + \frac{15485461176940138275779430623}{31626682583370470426178280347} a^{13} + \frac{483728415539866272838107012}{10542227527790156808726093449} a^{11} + \frac{3372368629505165775274822474}{31626682583370470426178280347} a^{9} - \frac{6972901853652496384006991708}{31626682583370470426178280347} a^{7} + \frac{3363699504020606263474473209}{31626682583370470426178280347} a^{5} + \frac{122794872054446801656325191}{10542227527790156808726093449} a^{3} - \frac{3924797260107352215359943435}{10542227527790156808726093449} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\times C_8$ (as 32T43):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_4\times C_8$ |
| Character table for $C_4\times C_8$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{4}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 13 | Data not computed | ||||||