Normalized defining polynomial
\( x^{32} - 28 x^{30} + 502 x^{28} - 5304 x^{26} + 40319 x^{24} - 205348 x^{22} + 769870 x^{20} - 2005384 x^{18} + 3886261 x^{16} - 5310988 x^{14} + 5324752 x^{12} - 3494768 x^{10} + 1644300 x^{8} - 452512 x^{6} + 81152 x^{4} - 1184 x^{2} + 16 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(184085596562491198850839682056048266622946116632576\)\(\medspace = 2^{64}\cdot 3^{16}\cdot 7^{16}\cdot 17^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $37.22$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 7, 17$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $16$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{16} a^{16} - \frac{1}{4} a^{15} + \frac{1}{8} a^{14} + \frac{1}{16} a^{12} - \frac{1}{4} a^{11} + \frac{1}{8} a^{10} - \frac{1}{2} a^{9} - \frac{5}{16} a^{8} + \frac{1}{4} a^{7} + \frac{3}{8} a^{6} - \frac{1}{2} a^{5} + \frac{3}{8} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{16} a^{17} + \frac{1}{8} a^{15} + \frac{1}{16} a^{13} + \frac{1}{8} a^{11} - \frac{1}{2} a^{10} - \frac{5}{16} a^{9} + \frac{3}{8} a^{7} - \frac{1}{2} a^{6} + \frac{3}{8} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{18} - \frac{3}{16} a^{14} - \frac{1}{2} a^{11} + \frac{7}{16} a^{10} - \frac{1}{2} a^{7} - \frac{3}{8} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{19} + \frac{5}{32} a^{15} - \frac{1}{4} a^{12} + \frac{15}{32} a^{11} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{7}{16} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a$, $\frac{1}{32} a^{20} - \frac{1}{32} a^{16} - \frac{1}{4} a^{15} + \frac{1}{8} a^{14} - \frac{1}{4} a^{13} - \frac{7}{32} a^{12} - \frac{1}{4} a^{11} - \frac{3}{8} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{7} - \frac{3}{8} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{32} a^{21} - \frac{1}{32} a^{17} + \frac{1}{8} a^{15} - \frac{1}{4} a^{14} - \frac{7}{32} a^{13} - \frac{3}{8} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{8} - \frac{3}{8} a^{7} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{32} a^{22} - \frac{1}{32} a^{18} - \frac{1}{4} a^{15} + \frac{1}{32} a^{14} - \frac{1}{4} a^{11} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2}$, $\frac{1}{32} a^{23} + \frac{3}{16} a^{15} - \frac{1}{4} a^{12} - \frac{9}{32} a^{11} - \frac{1}{2} a^{10} + \frac{1}{4} a^{9} + \frac{1}{4} a^{8} - \frac{7}{16} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} + \frac{1}{4} a$, $\frac{1}{160} a^{24} + \frac{1}{80} a^{22} - \frac{1}{160} a^{20} + \frac{3}{160} a^{16} - \frac{1}{4} a^{15} - \frac{1}{10} a^{14} + \frac{1}{16} a^{12} - \frac{1}{4} a^{11} + \frac{37}{80} a^{10} - \frac{1}{2} a^{9} - \frac{13}{80} a^{8} - \frac{1}{4} a^{7} - \frac{7}{20} a^{6} - \frac{1}{2} a^{5} - \frac{3}{8} a^{4} + \frac{2}{5} a^{2} - \frac{1}{2} a + \frac{3}{20}$, $\frac{1}{160} a^{25} + \frac{1}{80} a^{23} - \frac{1}{160} a^{21} + \frac{3}{160} a^{17} - \frac{1}{10} a^{15} + \frac{1}{16} a^{13} + \frac{37}{80} a^{11} - \frac{1}{2} a^{10} - \frac{13}{80} a^{9} - \frac{1}{2} a^{8} - \frac{7}{20} a^{7} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} - \frac{1}{2} a^{4} + \frac{2}{5} a^{3} - \frac{1}{2} a^{2} + \frac{3}{20} a$, $\frac{1}{160} a^{26} + \frac{1}{80} a^{20} - \frac{1}{80} a^{18} - \frac{1}{80} a^{16} - \frac{1}{4} a^{15} + \frac{7}{160} a^{14} - \frac{3}{80} a^{12} + \frac{1}{4} a^{11} - \frac{7}{80} a^{10} - \frac{2}{5} a^{8} - \frac{1}{4} a^{7} - \frac{17}{40} a^{6} - \frac{1}{2} a^{5} + \frac{3}{20} a^{4} - \frac{2}{5} a^{2} - \frac{3}{10}$, $\frac{1}{160} a^{27} + \frac{1}{80} a^{21} - \frac{1}{80} a^{19} - \frac{1}{80} a^{17} + \frac{7}{160} a^{15} - \frac{3}{80} a^{13} - \frac{7}{80} a^{11} - \frac{2}{5} a^{9} - \frac{17}{40} a^{7} - \frac{1}{2} a^{6} + \frac{3}{20} a^{5} - \frac{2}{5} a^{3} - \frac{3}{10} a$, $\frac{1}{175840} a^{28} + \frac{1}{1099} a^{26} - \frac{13}{43960} a^{24} - \frac{8}{785} a^{22} + \frac{67}{17584} a^{20} + \frac{409}{87920} a^{18} - \frac{2659}{175840} a^{16} - \frac{1}{4} a^{15} - \frac{8177}{87920} a^{14} + \frac{9809}{43960} a^{12} + \frac{1}{4} a^{11} - \frac{35291}{87920} a^{10} - \frac{1}{2} a^{9} + \frac{15287}{87920} a^{8} + \frac{1}{4} a^{7} + \frac{389}{785} a^{6} - \frac{1}{2} a^{5} + \frac{1429}{43960} a^{4} - \frac{851}{10990} a^{2} - \frac{1}{2} a + \frac{8569}{21980}$, $\frac{1}{175840} a^{29} + \frac{1}{1099} a^{27} - \frac{13}{43960} a^{25} - \frac{8}{785} a^{23} + \frac{67}{17584} a^{21} + \frac{409}{87920} a^{19} - \frac{2659}{175840} a^{17} - \frac{8177}{87920} a^{15} + \frac{9809}{43960} a^{13} - \frac{35291}{87920} a^{11} - \frac{1}{2} a^{10} + \frac{15287}{87920} a^{9} - \frac{1}{2} a^{8} + \frac{389}{785} a^{7} - \frac{1}{2} a^{6} + \frac{1429}{43960} a^{5} - \frac{851}{10990} a^{3} - \frac{1}{2} a^{2} + \frac{8569}{21980} a$, $\frac{1}{190788337649711815645073658881787777760} a^{30} - \frac{345279915742872498713546968513941}{190788337649711815645073658881787777760} a^{28} + \frac{51340448332752303941002362577605425}{19078833764971181564507365888178777776} a^{26} - \frac{4703809618338991096136690375909967}{190788337649711815645073658881787777760} a^{24} - \frac{32609254834868263382482321597309411}{95394168824855907822536829440893888880} a^{22} - \frac{2881941860999584209684645275361626191}{190788337649711815645073658881787777760} a^{20} - \frac{56765329744331961628800578533135857}{2298654670478455610181610347973346720} a^{18} + \frac{175985088746743384284376084913685}{40081583539855423454847407328106676} a^{16} - \frac{1}{4} a^{15} - \frac{16939187225412775217071406152000730217}{95394168824855907822536829440893888880} a^{14} + \frac{4479584252661388560116053010516988}{70142771194746991045982962824186683} a^{12} - \frac{1}{4} a^{11} - \frac{3863925225707118773652159289935706337}{19078833764971181564507365888178777776} a^{10} + \frac{23039887897604817841482787391718497213}{95394168824855907822536829440893888880} a^{8} + \frac{1}{4} a^{7} + \frac{4857301798447588673638910232821392001}{11924271103106988477817103680111736110} a^{6} - \frac{1}{2} a^{5} + \frac{3190302612004962558075331382732057047}{6813869201775421987324059245778134920} a^{4} + \frac{496676804428185645325100279857400866}{5962135551553494238908551840055868055} a^{2} - \frac{1}{2} a + \frac{8926784699240658874266066678781473123}{23848542206213976955634207360223472220}$, $\frac{1}{381576675299423631290147317763575555520} a^{31} + \frac{184932775912029565899800329757587}{95394168824855907822536829440893888880} a^{29} + \frac{9814374949001165162572333596902007}{5451095361420337589859247396622507936} a^{27} + \frac{141412840960503542130663845835370077}{47697084412427953911268414720446944440} a^{25} - \frac{5586839587350488516174540678507505543}{381576675299423631290147317763575555520} a^{23} - \frac{836852897079579811679203572679531543}{95394168824855907822536829440893888880} a^{21} + \frac{12880434919492601610180312777209761}{2298654670478455610181610347973346720} a^{19} - \frac{76429007722801748987264265503451023}{2805710847789879641839318512967467320} a^{17} - \frac{731141051404079756788399063723570273}{54510953614203375898592473966225079360} a^{15} - \frac{1}{4} a^{14} + \frac{805234728295057212259097882333734273}{5611421695579759283678637025934934640} a^{13} - \frac{1}{4} a^{12} - \frac{1566675829260203015299608968878875067}{190788337649711815645073658881787777760} a^{11} + \frac{1}{4} a^{10} - \frac{4402512485969662767141081800282072543}{47697084412427953911268414720446944440} a^{9} - \frac{1}{4} a^{8} - \frac{15363841165020546080527258405397147359}{95394168824855907822536829440893888880} a^{7} - \frac{1}{4} a^{6} + \frac{3405682453048675023802962180171609}{9539416882485590782253682944089388888} a^{5} + \frac{1}{4} a^{4} + \frac{4839717672597433543048893239059306237}{23848542206213976955634207360223472220} a^{3} - \frac{1}{2} a^{2} - \frac{4983355851385076103122681255402267497}{11924271103106988477817103680111736110} a - \frac{1}{2}$
Class group and class number
not computed
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{514996232529175576668093054984868617}{95394168824855907822536829440893888880} a^{31} + \frac{988106520635483486035703712791161}{1362773840355084397464811849155626984} a^{30} - \frac{3604382449022270539473796127595209947}{23848542206213976955634207360223472220} a^{29} - \frac{96823285094289232263717895106937049}{4769708441242795391126841472044694444} a^{28} + \frac{258462223445647671992516308044925698831}{95394168824855907822536829440893888880} a^{27} + \frac{13886130096013375056443394420900028831}{38157667529942363129014731776357555552} a^{26} - \frac{2730362074569507354458069031754085364851}{95394168824855907822536829440893888880} a^{25} - \frac{146695531565362803444888021738262891657}{38157667529942363129014731776357555552} a^{24} + \frac{4150351026456753812894507152519997081587}{19078833764971181564507365888178777776} a^{23} + \frac{39819189815535103881481029638740300655}{1362773840355084397464811849155626984} a^{22} - \frac{52829924586599207128709148866690083750073}{47697084412427953911268414720446944440} a^{21} - \frac{5676793647105181999500713932237637857833}{38157667529942363129014731776357555552} a^{20} + \frac{4771180308057980188798357914271404306931}{1149327335239227805090805173986673360} a^{19} + \frac{8009974033143960501828165962871708212}{14366591690490347563635064674833417} a^{18} - \frac{12129576781381995809678117950782616810659}{1122284339115951856735727405186986928} a^{17} - \frac{3257615084062207937618450952890564871835}{2244568678231903713471454810373973856} a^{16} + \frac{1996934928789693615039128479885794027651887}{95394168824855907822536829440893888880} a^{15} + \frac{107217631326153839452799035893432493557651}{38157667529942363129014731776357555552} a^{14} - \frac{80196186032143145663190025351933459682693}{2805710847789879641839318512967467320} a^{13} - \frac{4302705717676639163954075810640278224847}{1122284339115951856735727405186986928} a^{12} + \frac{390162646975655668015937163945657317473881}{13627738403550843974648118491556269840} a^{11} + \frac{18287419839542968524085243536523061079151}{4769708441242795391126841472044694444} a^{10} - \frac{1789268649131026700171573847451747328813087}{95394168824855907822536829440893888880} a^{9} - \frac{23885063909469021611976909738013364013113}{9539416882485590782253682944089388888} a^{8} + \frac{105086668555474653712982687262953750190429}{11924271103106988477817103680111736110} a^{7} + \frac{397654790784460289549565150933093256049}{340693460088771099366202962288906746} a^{6} - \frac{23052120519913087963677428519103333252099}{9539416882485590782253682944089388888} a^{5} - \frac{1500435983134946677055644497324633547337}{4769708441242795391126841472044694444} a^{4} + \frac{1035161254463375616980583511991251656371}{2384854220621397695563420736022347222} a^{3} + \frac{252139166040173027919746581252542158743}{4769708441242795391126841472044694444} a^{2} - \frac{151027767921222955513495610139025474777}{23848542206213976955634207360223472220} a - \frac{152300882045682185285006785323835843}{2384854220621397695563420736022347222} \) (order $24$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^3\times D_4$ (as 32T273):
A solvable group of order 64 |
The 40 conjugacy class representatives for $C_2^3\times D_4$ |
Character table for $C_2^3\times D_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
$17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |