# SageMath code for working with number field 32.0.170615961014359235699341036323165930807590484619140625.1. # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^32 - 9*x^31 + 200*x^29 - 221*x^28 - 2631*x^27 + 4402*x^26 + 19766*x^25 - 27449*x^24 - 173128*x^23 + 338537*x^22 + 473336*x^21 - 1004401*x^20 - 3368948*x^19 + 11453717*x^18 - 8139429*x^17 - 16834230*x^16 - 597015*x^15 + 195460786*x^14 - 382818671*x^13 - 27697040*x^12 + 420160443*x^11 + 1322753872*x^10 - 3917503795*x^9 + 2111159122*x^8 + 2050419221*x^7 + 1497324960*x^6 - 10922257252*x^5 + 11658561303*x^4 - 2839464368*x^3 - 2153549419*x^2 + 711827200*x + 313809121) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^32 - 9*x^31 + 200*x^29 - 221*x^28 - 2631*x^27 + 4402*x^26 + 19766*x^25 - 27449*x^24 - 173128*x^23 + 338537*x^22 + 473336*x^21 - 1004401*x^20 - 3368948*x^19 + 11453717*x^18 - 8139429*x^17 - 16834230*x^16 - 597015*x^15 + 195460786*x^14 - 382818671*x^13 - 27697040*x^12 + 420160443*x^11 + 1322753872*x^10 - 3917503795*x^9 + 2111159122*x^8 + 2050419221*x^7 + 1497324960*x^6 - 10922257252*x^5 + 11658561303*x^4 - 2839464368*x^3 - 2153549419*x^2 + 711827200*x + 313809121) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of [e_i,f_i] for the factorization of the ideal pO_K for p=7 in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]