Normalized defining polynomial
\(x^{32} - 24 x^{30} + 407 x^{28} - 3048 x^{26} + 15745 x^{24} - 51120 x^{22} + 120578 x^{20} - 196608 x^{18} + 236974 x^{16} - 196608 x^{14} + 120578 x^{12} - 51120 x^{10} + 15745 x^{8} - 3048 x^{6} + 407 x^{4} - 24 x^{2} + 1\)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(170408552095468407540899423358812160000000000000000\)\(\medspace = 2^{64}\cdot 3^{24}\cdot 5^{16}\cdot 11^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $37.13$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $2, 3, 5, 11$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $16$ | ||
This field is not Galois over $\Q$. | |||
This is a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{16} a^{12} - \frac{1}{2} a^{6} - \frac{7}{16}$, $\frac{1}{16} a^{13} - \frac{1}{2} a^{7} - \frac{7}{16} a$, $\frac{1}{16} a^{14} - \frac{1}{2} a^{8} - \frac{7}{16} a^{2}$, $\frac{1}{16} a^{15} - \frac{1}{2} a^{9} - \frac{7}{16} a^{3}$, $\frac{1}{48} a^{16} + \frac{1}{48} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{23}{48} a^{4} - \frac{23}{48}$, $\frac{1}{48} a^{17} + \frac{1}{48} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{23}{48} a^{5} - \frac{23}{48} a$, $\frac{1}{48} a^{18} + \frac{1}{48} a^{14} - \frac{1}{2} a^{8} - \frac{23}{48} a^{6} - \frac{23}{48} a^{2} - \frac{1}{2}$, $\frac{1}{48} a^{19} + \frac{1}{48} a^{15} - \frac{1}{2} a^{9} - \frac{23}{48} a^{7} - \frac{23}{48} a^{3} - \frac{1}{2} a$, $\frac{1}{48} a^{20} - \frac{1}{48} a^{12} - \frac{23}{48} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2} + \frac{23}{48}$, $\frac{1}{48} a^{21} - \frac{1}{48} a^{13} - \frac{23}{48} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3} + \frac{23}{48} a$, $\frac{1}{48} a^{22} - \frac{1}{48} a^{14} - \frac{23}{48} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} + \frac{23}{48} a^{2}$, $\frac{1}{48} a^{23} - \frac{1}{48} a^{15} - \frac{23}{48} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} + \frac{23}{48} a^{3}$, $\frac{1}{1536} a^{24} - \frac{1}{96} a^{18} + \frac{1}{48} a^{14} + \frac{1}{768} a^{12} - \frac{1}{2} a^{8} - \frac{1}{96} a^{6} - \frac{23}{48} a^{2} - \frac{383}{1536}$, $\frac{1}{1536} a^{25} - \frac{1}{96} a^{19} + \frac{1}{48} a^{15} + \frac{1}{768} a^{13} - \frac{1}{2} a^{9} - \frac{1}{96} a^{7} - \frac{23}{48} a^{3} - \frac{383}{1536} a$, $\frac{1}{1536} a^{26} - \frac{1}{96} a^{20} + \frac{1}{768} a^{14} - \frac{1}{48} a^{12} - \frac{1}{96} a^{8} - \frac{1}{2} a^{6} - \frac{383}{1536} a^{2} + \frac{23}{48}$, $\frac{1}{1536} a^{27} - \frac{1}{96} a^{21} + \frac{1}{768} a^{15} - \frac{1}{48} a^{13} - \frac{1}{96} a^{9} - \frac{1}{2} a^{7} - \frac{383}{1536} a^{3} + \frac{23}{48} a$, $\frac{1}{614389248} a^{28} - \frac{4337}{68265472} a^{26} - \frac{16831}{76798656} a^{24} + \frac{87743}{12799776} a^{22} + \frac{4415}{556512} a^{20} - \frac{63517}{6399888} a^{18} + \frac{2967793}{307194624} a^{16} - \frac{1104179}{102398208} a^{14} - \frac{479011}{38399328} a^{12} + \frac{4539551}{12799776} a^{10} - \frac{273841}{556512} a^{8} + \frac{910523}{6399888} a^{6} + \frac{294660193}{614389248} a^{4} + \frac{8520173}{204796416} a^{2} + \frac{15949721}{76798656}$, $\frac{1}{614389248} a^{29} - \frac{4337}{68265472} a^{27} - \frac{16831}{76798656} a^{25} + \frac{87743}{12799776} a^{23} + \frac{4415}{556512} a^{21} - \frac{63517}{6399888} a^{19} + \frac{2967793}{307194624} a^{17} - \frac{1104179}{102398208} a^{15} - \frac{479011}{38399328} a^{13} + \frac{4539551}{12799776} a^{11} - \frac{273841}{556512} a^{9} + \frac{910523}{6399888} a^{7} + \frac{294660193}{614389248} a^{5} + \frac{8520173}{204796416} a^{3} + \frac{15949721}{76798656} a$, $\frac{1}{14524776211968} a^{30} + \frac{1115}{1613864023552} a^{28} - \frac{4529360147}{14524776211968} a^{26} - \frac{344884181}{1613864023552} a^{24} + \frac{2245511119}{302599504416} a^{22} + \frac{273696395}{100866501472} a^{20} + \frac{68553446617}{7262388105984} a^{18} + \frac{55504709}{17168766208} a^{16} + \frac{245335235}{154518895872} a^{14} + \frac{6937519315}{806932011776} a^{12} + \frac{88696067}{887388576} a^{10} - \frac{19183447061}{100866501472} a^{8} + \frac{1870878670129}{14524776211968} a^{6} + \frac{280119113083}{1613864023552} a^{4} + \frac{6090288513325}{14524776211968} a^{2} - \frac{750810721797}{1613864023552}$, $\frac{1}{14524776211968} a^{31} + \frac{1115}{1613864023552} a^{29} - \frac{4529360147}{14524776211968} a^{27} - \frac{344884181}{1613864023552} a^{25} + \frac{2245511119}{302599504416} a^{23} + \frac{273696395}{100866501472} a^{21} + \frac{68553446617}{7262388105984} a^{19} + \frac{55504709}{17168766208} a^{17} + \frac{245335235}{154518895872} a^{15} + \frac{6937519315}{806932011776} a^{13} + \frac{88696067}{887388576} a^{11} - \frac{19183447061}{100866501472} a^{9} + \frac{1870878670129}{14524776211968} a^{7} + \frac{280119113083}{1613864023552} a^{5} + \frac{6090288513325}{14524776211968} a^{3} - \frac{750810721797}{1613864023552} a$
Class group and class number
$C_{2}\times C_{4}\times C_{8}$, which has order $64$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{36033961741}{660217100544} a^{31} - \frac{19171119113099}{14524776211968} a^{29} + \frac{163070398171481}{7262388105984} a^{27} - \frac{2475592237058459}{14524776211968} a^{25} + \frac{269332003570057}{302599504416} a^{23} - \frac{111564248757713}{37824938052} a^{21} + \frac{25793310111599507}{3631194052992} a^{19} - \frac{1850690782190389}{154518895872} a^{17} + \frac{1159510078533847}{77259447936} a^{15} - \frac{3117392626573781}{234270584064} a^{13} + \frac{2673977643717241}{302599504416} a^{11} - \frac{162069059908859}{37824938052} a^{9} + \frac{11405563394861975}{7262388105984} a^{7} - \frac{5941360886911595}{14524776211968} a^{5} + \frac{524269443581849}{7262388105984} a^{3} - \frac{82634753254523}{14524776211968} a \) (order $24$) ![]() | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 547885182394.1923 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
$C_2^3\times D_4$ (as 32T273):
A solvable group of order 64 |
The 40 conjugacy class representatives for $C_2^3\times D_4$ |
Character table for $C_2^3\times D_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
$3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
$5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |