Normalized defining polynomial
\( x^{32} - 12 x^{31} + 72 x^{30} - 300 x^{29} + 1035 x^{28} - 3260 x^{27} + 9600 x^{26} - 26564 x^{25} + \cdots + 9834496 \)
Invariants
Degree: | $32$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 16]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: | \(16911935728484512440926445363543525554439219897696256\) \(\medspace = 2^{64}\cdot 7^{16}\cdot 23^{8}\cdot 137^{4}\) | sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(42.87\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{2}7^{1/2}23^{1/2}137^{1/2}\approx 594.0639696194341$ | ||
Ramified primes: | \(2\), \(7\), \(23\), \(137\) | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $8$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is a CM field. | |||
Reflex fields: | unavailable$^{32768}$ |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{2}$, $\frac{1}{4}a^{15}-\frac{1}{2}a^{13}+\frac{1}{4}a^{3}-\frac{1}{2}a$, $\frac{1}{4}a^{16}+\frac{1}{4}a^{4}$, $\frac{1}{4}a^{17}+\frac{1}{4}a^{5}$, $\frac{1}{4}a^{18}+\frac{1}{4}a^{6}$, $\frac{1}{4}a^{19}+\frac{1}{4}a^{7}$, $\frac{1}{8}a^{20}-\frac{1}{8}a^{18}-\frac{1}{8}a^{16}-\frac{1}{4}a^{14}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{3}{8}a^{8}-\frac{1}{2}a^{7}-\frac{1}{8}a^{6}-\frac{1}{2}a^{5}+\frac{3}{8}a^{4}-\frac{1}{2}a^{3}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{21}-\frac{1}{8}a^{19}-\frac{1}{8}a^{17}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{3}{8}a^{9}-\frac{1}{2}a^{8}-\frac{1}{8}a^{7}-\frac{1}{2}a^{6}+\frac{3}{8}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{22}-\frac{1}{8}a^{16}-\frac{1}{4}a^{14}-\frac{1}{2}a^{13}-\frac{1}{2}a^{12}+\frac{1}{8}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{6}-\frac{1}{8}a^{4}+\frac{1}{4}a^{2}-\frac{1}{2}a$, $\frac{1}{8}a^{23}-\frac{1}{8}a^{17}+\frac{1}{8}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{8}a^{5}-\frac{1}{2}a^{3}-\frac{1}{2}a$, $\frac{1}{56}a^{24}+\frac{3}{56}a^{23}+\frac{3}{56}a^{22}-\frac{1}{28}a^{21}-\frac{1}{28}a^{20}+\frac{1}{14}a^{19}-\frac{3}{56}a^{18}-\frac{3}{56}a^{17}-\frac{1}{56}a^{16}+\frac{1}{28}a^{15}-\frac{1}{28}a^{14}+\frac{3}{8}a^{12}+\frac{11}{56}a^{11}+\frac{23}{56}a^{10}-\frac{3}{28}a^{9}-\frac{1}{28}a^{8}+\frac{3}{7}a^{7}-\frac{15}{56}a^{6}+\frac{13}{56}a^{5}+\frac{19}{56}a^{4}-\frac{9}{28}a^{3}-\frac{13}{28}a^{2}-\frac{1}{2}a$, $\frac{1}{112}a^{25}-\frac{3}{56}a^{23}-\frac{1}{28}a^{22}-\frac{3}{112}a^{21}-\frac{1}{28}a^{20}-\frac{1}{14}a^{19}-\frac{1}{14}a^{18}-\frac{13}{112}a^{17}+\frac{3}{28}a^{16}+\frac{3}{56}a^{15}-\frac{1}{14}a^{14}-\frac{1}{16}a^{13}+\frac{1}{28}a^{12}-\frac{19}{56}a^{11}+\frac{1}{7}a^{10}+\frac{37}{112}a^{9}-\frac{5}{14}a^{8}+\frac{2}{7}a^{7}-\frac{3}{28}a^{6}+\frac{43}{112}a^{5}+\frac{1}{7}a^{4}-\frac{3}{8}a^{3}-\frac{5}{28}a^{2}-\frac{1}{2}a$, $\frac{1}{224}a^{26}-\frac{1}{112}a^{24}+\frac{1}{28}a^{23}-\frac{5}{224}a^{22}-\frac{3}{56}a^{21}-\frac{1}{112}a^{20}-\frac{5}{56}a^{19}-\frac{11}{224}a^{18}-\frac{13}{112}a^{16}-\frac{15}{224}a^{14}+\frac{15}{56}a^{13}-\frac{5}{112}a^{12}+\frac{1}{56}a^{11}-\frac{53}{224}a^{10}+\frac{13}{28}a^{9}-\frac{37}{112}a^{8}-\frac{1}{2}a^{7}+\frac{53}{224}a^{6}+\frac{3}{56}a^{5}+\frac{31}{112}a^{4}-\frac{9}{56}a^{3}+\frac{2}{7}a^{2}-\frac{1}{2}a$, $\frac{1}{448}a^{27}-\frac{1}{224}a^{25}-\frac{1}{448}a^{23}-\frac{1}{56}a^{22}-\frac{1}{32}a^{21}+\frac{3}{56}a^{20}+\frac{41}{448}a^{19}+\frac{13}{112}a^{18}+\frac{27}{224}a^{17}+\frac{1}{56}a^{16}-\frac{31}{448}a^{15}+\frac{19}{112}a^{14}+\frac{107}{224}a^{13}+\frac{15}{112}a^{12}-\frac{113}{448}a^{11}+\frac{43}{112}a^{10}+\frac{29}{224}a^{9}+\frac{11}{112}a^{8}-\frac{55}{448}a^{7}+\frac{5}{14}a^{6}-\frac{15}{32}a^{5}+\frac{9}{112}a^{4}-\frac{2}{7}a^{3}+\frac{13}{28}a^{2}-\frac{1}{2}a$, $\frac{1}{6272}a^{28}+\frac{1}{3136}a^{27}+\frac{1}{3136}a^{26}-\frac{5}{1568}a^{25}-\frac{1}{6272}a^{24}-\frac{97}{3136}a^{23}+\frac{187}{3136}a^{22}-\frac{47}{1568}a^{21}+\frac{185}{6272}a^{20}+\frac{135}{3136}a^{19}+\frac{137}{3136}a^{18}-\frac{23}{1568}a^{17}-\frac{151}{6272}a^{16}-\frac{313}{3136}a^{15}-\frac{743}{3136}a^{14}+\frac{1}{16}a^{13}-\frac{153}{6272}a^{12}+\frac{23}{448}a^{11}+\frac{1347}{3136}a^{10}-\frac{309}{784}a^{9}-\frac{2719}{6272}a^{8}-\frac{667}{3136}a^{7}+\frac{785}{3136}a^{6}-\frac{27}{196}a^{5}-\frac{19}{49}a^{4}+\frac{1}{28}a^{3}+\frac{1}{7}a^{2}$, $\frac{1}{43904}a^{29}+\frac{1}{21952}a^{28}+\frac{1}{21952}a^{27}-\frac{19}{10976}a^{26}+\frac{167}{43904}a^{25}+\frac{127}{21952}a^{24}+\frac{355}{21952}a^{23}-\frac{677}{10976}a^{22}-\frac{1103}{43904}a^{21}+\frac{695}{21952}a^{20}+\frac{305}{21952}a^{19}-\frac{653}{10976}a^{18}-\frac{4911}{43904}a^{17}-\frac{2273}{21952}a^{16}-\frac{1471}{21952}a^{15}+\frac{5}{56}a^{14}-\frac{1553}{43904}a^{13}-\frac{57}{3136}a^{12}+\frac{9691}{21952}a^{11}+\frac{439}{1372}a^{10}-\frac{1991}{43904}a^{9}+\frac{8293}{21952}a^{8}-\frac{2295}{21952}a^{7}+\frac{501}{5488}a^{6}-\frac{2271}{5488}a^{5}+\frac{101}{392}a^{4}-\frac{5}{56}a^{3}-\frac{3}{28}a^{2}+\frac{5}{14}a$, $\frac{1}{16\!\cdots\!20}a^{30}-\frac{52\!\cdots\!45}{20\!\cdots\!84}a^{29}-\frac{15\!\cdots\!77}{20\!\cdots\!84}a^{28}+\frac{80\!\cdots\!97}{82\!\cdots\!36}a^{27}+\frac{41\!\cdots\!03}{32\!\cdots\!44}a^{26}-\frac{13\!\cdots\!81}{41\!\cdots\!68}a^{25}-\frac{35\!\cdots\!41}{41\!\cdots\!68}a^{24}-\frac{98\!\cdots\!61}{41\!\cdots\!80}a^{23}+\frac{68\!\cdots\!81}{32\!\cdots\!44}a^{22}+\frac{24\!\cdots\!89}{41\!\cdots\!80}a^{21}-\frac{23\!\cdots\!83}{41\!\cdots\!68}a^{20}-\frac{84\!\cdots\!79}{41\!\cdots\!80}a^{19}-\frac{10\!\cdots\!63}{16\!\cdots\!20}a^{18}-\frac{35\!\cdots\!63}{41\!\cdots\!80}a^{17}+\frac{15\!\cdots\!11}{20\!\cdots\!40}a^{16}+\frac{88\!\cdots\!81}{58\!\cdots\!24}a^{15}-\frac{29\!\cdots\!49}{32\!\cdots\!44}a^{14}-\frac{14\!\cdots\!51}{83\!\cdots\!20}a^{13}-\frac{13\!\cdots\!03}{10\!\cdots\!20}a^{12}+\frac{18\!\cdots\!43}{39\!\cdots\!64}a^{11}+\frac{42\!\cdots\!53}{16\!\cdots\!20}a^{10}+\frac{56\!\cdots\!57}{20\!\cdots\!40}a^{9}+\frac{82\!\cdots\!11}{10\!\cdots\!20}a^{8}-\frac{25\!\cdots\!97}{20\!\cdots\!40}a^{7}-\frac{23\!\cdots\!55}{82\!\cdots\!36}a^{6}-\frac{61\!\cdots\!71}{14\!\cdots\!60}a^{5}+\frac{72\!\cdots\!83}{14\!\cdots\!56}a^{4}-\frac{29\!\cdots\!21}{13\!\cdots\!80}a^{3}+\frac{18\!\cdots\!21}{52\!\cdots\!20}a^{2}-\frac{56\!\cdots\!47}{18\!\cdots\!40}a+\frac{26\!\cdots\!73}{93\!\cdots\!70}$, $\frac{1}{27\!\cdots\!40}a^{31}-\frac{27\!\cdots\!93}{10\!\cdots\!40}a^{30}+\frac{24\!\cdots\!75}{34\!\cdots\!48}a^{29}+\frac{24\!\cdots\!45}{13\!\cdots\!92}a^{28}-\frac{41\!\cdots\!21}{55\!\cdots\!68}a^{27}-\frac{85\!\cdots\!99}{68\!\cdots\!96}a^{26}+\frac{24\!\cdots\!67}{68\!\cdots\!96}a^{25}+\frac{54\!\cdots\!99}{68\!\cdots\!60}a^{24}-\frac{16\!\cdots\!03}{27\!\cdots\!40}a^{23}+\frac{43\!\cdots\!29}{68\!\cdots\!60}a^{22}-\frac{60\!\cdots\!77}{14\!\cdots\!60}a^{21}-\frac{37\!\cdots\!59}{68\!\cdots\!60}a^{20}+\frac{39\!\cdots\!61}{55\!\cdots\!68}a^{19}+\frac{45\!\cdots\!13}{68\!\cdots\!60}a^{18}-\frac{10\!\cdots\!97}{34\!\cdots\!80}a^{17}+\frac{93\!\cdots\!51}{49\!\cdots\!40}a^{16}+\frac{16\!\cdots\!43}{55\!\cdots\!68}a^{15}+\frac{14\!\cdots\!23}{98\!\cdots\!80}a^{14}+\frac{16\!\cdots\!89}{34\!\cdots\!48}a^{13}-\frac{60\!\cdots\!17}{34\!\cdots\!80}a^{12}+\frac{16\!\cdots\!93}{27\!\cdots\!40}a^{11}-\frac{13\!\cdots\!21}{34\!\cdots\!80}a^{10}+\frac{72\!\cdots\!03}{17\!\cdots\!40}a^{9}+\frac{83\!\cdots\!97}{34\!\cdots\!80}a^{8}-\frac{30\!\cdots\!63}{68\!\cdots\!60}a^{7}+\frac{78\!\cdots\!37}{35\!\cdots\!60}a^{6}+\frac{40\!\cdots\!09}{12\!\cdots\!60}a^{5}-\frac{12\!\cdots\!77}{43\!\cdots\!20}a^{4}-\frac{15\!\cdots\!67}{87\!\cdots\!40}a^{3}-\frac{13\!\cdots\!09}{44\!\cdots\!40}a^{2}+\frac{19\!\cdots\!91}{15\!\cdots\!40}a-\frac{19\!\cdots\!78}{56\!\cdots\!55}$
Monogenic: | No | |
Index: | Not computed | |
Inessential primes: | $2$ |
Class group and class number
$C_{2}\times C_{2}\times C_{48}$, which has order $192$ (assuming GRH)
Relative class number: $192$ (assuming GRH)
Unit group
Rank: | $15$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: | \( \frac{1834234786666185239840490229350512693743481954125462116003146559}{8842427446421628196470365968254537580065853857622899683158630486227968} a^{31} - \frac{106968831333244876219666131053647636909711182830963665380121536299}{44212137232108140982351829841272687900329269288114498415793152431139840} a^{30} + \frac{7807375111372872227456060614236664477458984047504666804971987309}{552651715401351762279397873015908598754115866101431230197414405389248} a^{29} - \frac{127146286818626357655911506337456275576157245039270816527097561111}{2210606861605407049117591492063634395016463464405724920789657621556992} a^{28} + \frac{1727354457751442472473825578279543005789886190710661147622013394841}{8842427446421628196470365968254537580065853857622899683158630486227968} a^{27} - \frac{5391461930598584047128835973676964484529019937817713980803735496397}{8842427446421628196470365968254537580065853857622899683158630486227968} a^{26} + \frac{984916125776605353799632687690455828630101878308166075795070695725}{552651715401351762279397873015908598754115866101431230197414405389248} a^{25} - \frac{10825338285213608636746213556583828010211438478071726520812532562755}{2210606861605407049117591492063634395016463464405724920789657621556992} a^{24} + \frac{566606159043635236610612614754060117000940242131017308828354595836251}{44212137232108140982351829841272687900329269288114498415793152431139840} a^{23} - \frac{279985244533273471381311235380363134764317511891812413735166951769639}{8842427446421628196470365968254537580065853857622899683158630486227968} a^{22} + \frac{796854708114817976733810201486815266638308650277091400232726135147379}{11053034308027035245587957460318171975082317322028624603948288107784960} a^{21} - \frac{334631705209207282848700844074554377736238914697709242082853558872673}{2210606861605407049117591492063634395016463464405724920789657621556992} a^{20} + \frac{13254445194363609484432502966094940462667131827508514182228035751747899}{44212137232108140982351829841272687900329269288114498415793152431139840} a^{19} - \frac{24687675720754556511522723326614521172747307715185017811510543669640603}{44212137232108140982351829841272687900329269288114498415793152431139840} a^{18} + \frac{10434105342829808945709392964754028835317979565040586362953720240510147}{11053034308027035245587957460318171975082317322028624603948288107784960} a^{17} - \frac{162018462408449108997926081660651080819829751794569805337468454283821}{112786064367622808628448545513450734439615482877843108203553960283520} a^{16} + \frac{18630074762329311321120489130665000982369536761991883689465685276317917}{8842427446421628196470365968254537580065853857622899683158630486227968} a^{15} - \frac{3971648432922643321997444578225376384876892994187017826415023249464431}{1263203920917375456638623709750648225723693408231842811879804355175424} a^{14} + \frac{48186691831530071093403800443148118758937165589917090132457860861210781}{11053034308027035245587957460318171975082317322028624603948288107784960} a^{13} - \frac{13329906300025228892664948979032895851579062565186067608093919684932273}{2763258577006758811396989365079542993770579330507156150987072026946240} a^{12} + \frac{35169386764001748975502515070860838550913073680843791391781265446655291}{8842427446421628196470365968254537580065853857622899683158630486227968} a^{11} - \frac{127957290234778682321094666298876977528300704853874826112605222798981607}{44212137232108140982351829841272687900329269288114498415793152431139840} a^{10} + \frac{17295168885882418022429560409036641490581701435216270399887968509778477}{5526517154013517622793978730159085987541158661014312301974144053892480} a^{9} - \frac{7279225799268695347519299525284606592137399423553368283112523074695409}{2763258577006758811396989365079542993770579330507156150987072026946240} a^{8} - \frac{30714339084067963167163067907529713669175536268057475669901479152142519}{11053034308027035245587957460318171975082317322028624603948288107784960} a^{7} + \frac{3422504066565390860099689115617662746062504424615273486547807308171043}{315800980229343864159655927437662056430923352057960702969951088793856} a^{6} - \frac{5429591680522015931494182987312469375905067108466464854287726060156161}{394751225286679830199569909297077570538654190072450878712438860992320} a^{5} + \frac{46102829968510006098451067241489701824130852368923186308382738357519}{5639303218381140431422427275672536721980774143892155410177698014176} a^{4} + \frac{25882879939427281552252013261317931888865563048507636556853933766391}{14098258045952851078556068189181341804951935359730388525444245035440} a^{3} - \frac{13771713629858802455864737463799879922620092546212555568355422994877}{2014036863707550154079438312740191686421705051390055503634892147920} a^{2} + \frac{3155094807804750722599829162165541772320772978352146865745336508343}{503509215926887538519859578185047921605426262847513875908723036980} a - \frac{115770707473297544727400298425920793832034891135699236796933361181}{35964943994777681322847112727503422971816161631965276850623074070} \) (order $8$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: | $\frac{41\!\cdots\!13}{88\!\cdots\!80}a^{31}-\frac{24\!\cdots\!29}{44\!\cdots\!40}a^{30}+\frac{17\!\cdots\!31}{55\!\cdots\!48}a^{29}-\frac{57\!\cdots\!87}{44\!\cdots\!84}a^{28}+\frac{78\!\cdots\!55}{17\!\cdots\!36}a^{27}-\frac{12\!\cdots\!39}{88\!\cdots\!68}a^{26}+\frac{89\!\cdots\!23}{22\!\cdots\!92}a^{25}-\frac{24\!\cdots\!33}{22\!\cdots\!20}a^{24}+\frac{25\!\cdots\!77}{88\!\cdots\!80}a^{23}-\frac{31\!\cdots\!91}{44\!\cdots\!40}a^{22}+\frac{90\!\cdots\!67}{55\!\cdots\!80}a^{21}-\frac{75\!\cdots\!67}{22\!\cdots\!20}a^{20}+\frac{59\!\cdots\!09}{88\!\cdots\!80}a^{19}-\frac{55\!\cdots\!51}{44\!\cdots\!40}a^{18}+\frac{73\!\cdots\!35}{34\!\cdots\!28}a^{17}-\frac{73\!\cdots\!27}{22\!\cdots\!40}a^{16}+\frac{84\!\cdots\!95}{17\!\cdots\!36}a^{15}-\frac{44\!\cdots\!67}{63\!\cdots\!20}a^{14}+\frac{10\!\cdots\!83}{11\!\cdots\!60}a^{13}-\frac{12\!\cdots\!27}{11\!\cdots\!60}a^{12}+\frac{79\!\cdots\!69}{88\!\cdots\!80}a^{11}-\frac{28\!\cdots\!13}{44\!\cdots\!40}a^{10}+\frac{78\!\cdots\!51}{11\!\cdots\!96}a^{9}-\frac{66\!\cdots\!57}{11\!\cdots\!60}a^{8}-\frac{13\!\cdots\!03}{22\!\cdots\!20}a^{7}+\frac{38\!\cdots\!79}{15\!\cdots\!80}a^{6}-\frac{15\!\cdots\!47}{49\!\cdots\!40}a^{5}+\frac{52\!\cdots\!33}{28\!\cdots\!80}a^{4}+\frac{23\!\cdots\!05}{56\!\cdots\!76}a^{3}-\frac{31\!\cdots\!09}{20\!\cdots\!20}a^{2}+\frac{35\!\cdots\!31}{25\!\cdots\!90}a-\frac{13\!\cdots\!91}{35\!\cdots\!70}$, $\frac{50\!\cdots\!61}{52\!\cdots\!60}a^{31}-\frac{14\!\cdots\!49}{13\!\cdots\!40}a^{30}+\frac{51\!\cdots\!91}{81\!\cdots\!64}a^{29}-\frac{65\!\cdots\!35}{26\!\cdots\!48}a^{28}+\frac{88\!\cdots\!31}{10\!\cdots\!92}a^{27}-\frac{68\!\cdots\!49}{26\!\cdots\!48}a^{26}+\frac{98\!\cdots\!41}{13\!\cdots\!24}a^{25}-\frac{26\!\cdots\!41}{13\!\cdots\!40}a^{24}+\frac{28\!\cdots\!29}{52\!\cdots\!60}a^{23}-\frac{33\!\cdots\!08}{25\!\cdots\!95}a^{22}+\frac{19\!\cdots\!73}{65\!\cdots\!20}a^{21}-\frac{80\!\cdots\!99}{13\!\cdots\!40}a^{20}+\frac{62\!\cdots\!13}{52\!\cdots\!60}a^{19}-\frac{72\!\cdots\!99}{32\!\cdots\!60}a^{18}+\frac{47\!\cdots\!03}{13\!\cdots\!24}a^{17}-\frac{50\!\cdots\!33}{93\!\cdots\!60}a^{16}+\frac{83\!\cdots\!15}{10\!\cdots\!92}a^{15}-\frac{11\!\cdots\!71}{93\!\cdots\!60}a^{14}+\frac{53\!\cdots\!63}{32\!\cdots\!60}a^{13}-\frac{10\!\cdots\!49}{65\!\cdots\!20}a^{12}+\frac{63\!\cdots\!73}{52\!\cdots\!60}a^{11}-\frac{11\!\cdots\!83}{13\!\cdots\!40}a^{10}+\frac{37\!\cdots\!61}{32\!\cdots\!56}a^{9}-\frac{50\!\cdots\!79}{65\!\cdots\!20}a^{8}-\frac{23\!\cdots\!11}{13\!\cdots\!40}a^{7}+\frac{13\!\cdots\!19}{29\!\cdots\!80}a^{6}-\frac{11\!\cdots\!97}{23\!\cdots\!40}a^{5}+\frac{92\!\cdots\!69}{41\!\cdots\!40}a^{4}+\frac{40\!\cdots\!81}{33\!\cdots\!72}a^{3}-\frac{78\!\cdots\!67}{29\!\cdots\!60}a^{2}+\frac{54\!\cdots\!39}{29\!\cdots\!60}a-\frac{99\!\cdots\!86}{10\!\cdots\!95}$, $\frac{22\!\cdots\!19}{89\!\cdots\!60}a^{31}-\frac{13\!\cdots\!97}{44\!\cdots\!80}a^{30}+\frac{18\!\cdots\!27}{11\!\cdots\!32}a^{29}-\frac{30\!\cdots\!37}{44\!\cdots\!28}a^{28}+\frac{40\!\cdots\!93}{17\!\cdots\!12}a^{27}-\frac{62\!\cdots\!55}{89\!\cdots\!56}a^{26}+\frac{45\!\cdots\!99}{22\!\cdots\!64}a^{25}-\frac{12\!\cdots\!39}{22\!\cdots\!40}a^{24}+\frac{12\!\cdots\!11}{89\!\cdots\!60}a^{23}-\frac{15\!\cdots\!03}{44\!\cdots\!80}a^{22}+\frac{44\!\cdots\!11}{55\!\cdots\!60}a^{21}-\frac{36\!\cdots\!81}{22\!\cdots\!40}a^{20}+\frac{12\!\cdots\!49}{38\!\cdots\!20}a^{19}-\frac{26\!\cdots\!63}{44\!\cdots\!80}a^{18}+\frac{54\!\cdots\!03}{55\!\cdots\!16}a^{17}-\frac{22\!\cdots\!47}{15\!\cdots\!60}a^{16}+\frac{37\!\cdots\!49}{17\!\cdots\!12}a^{15}-\frac{19\!\cdots\!31}{63\!\cdots\!40}a^{14}+\frac{47\!\cdots\!69}{11\!\cdots\!20}a^{13}-\frac{47\!\cdots\!81}{11\!\cdots\!20}a^{12}+\frac{26\!\cdots\!27}{89\!\cdots\!60}a^{11}-\frac{92\!\cdots\!49}{44\!\cdots\!80}a^{10}+\frac{77\!\cdots\!83}{27\!\cdots\!08}a^{9}-\frac{20\!\cdots\!71}{11\!\cdots\!20}a^{8}-\frac{11\!\cdots\!29}{22\!\cdots\!40}a^{7}+\frac{19\!\cdots\!87}{15\!\cdots\!60}a^{6}-\frac{55\!\cdots\!61}{49\!\cdots\!80}a^{5}+\frac{12\!\cdots\!29}{28\!\cdots\!60}a^{4}+\frac{17\!\cdots\!83}{56\!\cdots\!92}a^{3}-\frac{13\!\cdots\!57}{20\!\cdots\!40}a^{2}+\frac{48\!\cdots\!99}{12\!\cdots\!65}a-\frac{78\!\cdots\!83}{36\!\cdots\!90}$, $\frac{42\!\cdots\!95}{55\!\cdots\!68}a^{31}-\frac{10\!\cdots\!87}{68\!\cdots\!60}a^{30}+\frac{11\!\cdots\!17}{86\!\cdots\!12}a^{29}-\frac{89\!\cdots\!41}{13\!\cdots\!92}a^{28}+\frac{13\!\cdots\!89}{55\!\cdots\!68}a^{27}-\frac{10\!\cdots\!11}{13\!\cdots\!92}a^{26}+\frac{16\!\cdots\!91}{68\!\cdots\!96}a^{25}-\frac{94\!\cdots\!27}{13\!\cdots\!92}a^{24}+\frac{50\!\cdots\!27}{27\!\cdots\!40}a^{23}-\frac{81\!\cdots\!11}{17\!\cdots\!24}a^{22}+\frac{39\!\cdots\!39}{34\!\cdots\!80}a^{21}-\frac{34\!\cdots\!33}{13\!\cdots\!92}a^{20}+\frac{14\!\cdots\!43}{27\!\cdots\!40}a^{19}-\frac{17\!\cdots\!51}{17\!\cdots\!40}a^{18}+\frac{61\!\cdots\!97}{34\!\cdots\!80}a^{17}-\frac{20\!\cdots\!17}{70\!\cdots\!20}a^{16}+\frac{23\!\cdots\!89}{55\!\cdots\!68}a^{15}-\frac{61\!\cdots\!97}{98\!\cdots\!28}a^{14}+\frac{16\!\cdots\!93}{17\!\cdots\!40}a^{13}-\frac{42\!\cdots\!07}{34\!\cdots\!80}a^{12}+\frac{64\!\cdots\!19}{55\!\cdots\!68}a^{11}-\frac{59\!\cdots\!21}{68\!\cdots\!60}a^{10}+\frac{29\!\cdots\!27}{37\!\cdots\!40}a^{9}-\frac{35\!\cdots\!61}{34\!\cdots\!80}a^{8}+\frac{32\!\cdots\!07}{68\!\cdots\!60}a^{7}+\frac{19\!\cdots\!17}{12\!\cdots\!16}a^{6}-\frac{39\!\cdots\!51}{12\!\cdots\!60}a^{5}+\frac{21\!\cdots\!23}{87\!\cdots\!44}a^{4}-\frac{52\!\cdots\!93}{87\!\cdots\!40}a^{3}-\frac{18\!\cdots\!53}{15\!\cdots\!40}a^{2}+\frac{25\!\cdots\!23}{15\!\cdots\!40}a-\frac{39\!\cdots\!58}{56\!\cdots\!55}$, $\frac{29\!\cdots\!09}{27\!\cdots\!40}a^{31}-\frac{16\!\cdots\!87}{13\!\cdots\!20}a^{30}+\frac{11\!\cdots\!39}{17\!\cdots\!24}a^{29}-\frac{36\!\cdots\!87}{13\!\cdots\!92}a^{28}+\frac{47\!\cdots\!19}{55\!\cdots\!68}a^{27}-\frac{73\!\cdots\!33}{27\!\cdots\!84}a^{26}+\frac{53\!\cdots\!35}{68\!\cdots\!96}a^{25}-\frac{14\!\cdots\!49}{68\!\cdots\!60}a^{24}+\frac{14\!\cdots\!41}{27\!\cdots\!40}a^{23}-\frac{18\!\cdots\!73}{13\!\cdots\!20}a^{22}+\frac{15\!\cdots\!83}{53\!\cdots\!20}a^{21}-\frac{42\!\cdots\!91}{68\!\cdots\!60}a^{20}+\frac{32\!\cdots\!97}{27\!\cdots\!40}a^{19}-\frac{29\!\cdots\!73}{13\!\cdots\!20}a^{18}+\frac{12\!\cdots\!97}{34\!\cdots\!48}a^{17}-\frac{25\!\cdots\!17}{49\!\cdots\!40}a^{16}+\frac{42\!\cdots\!87}{55\!\cdots\!68}a^{15}-\frac{22\!\cdots\!21}{19\!\cdots\!60}a^{14}+\frac{53\!\cdots\!29}{34\!\cdots\!80}a^{13}-\frac{54\!\cdots\!91}{34\!\cdots\!80}a^{12}+\frac{31\!\cdots\!17}{27\!\cdots\!40}a^{11}-\frac{11\!\cdots\!59}{13\!\cdots\!20}a^{10}+\frac{38\!\cdots\!21}{34\!\cdots\!48}a^{9}-\frac{26\!\cdots\!41}{34\!\cdots\!80}a^{8}-\frac{10\!\cdots\!19}{68\!\cdots\!60}a^{7}+\frac{20\!\cdots\!57}{49\!\cdots\!40}a^{6}-\frac{28\!\cdots\!19}{61\!\cdots\!80}a^{5}+\frac{19\!\cdots\!69}{87\!\cdots\!40}a^{4}+\frac{18\!\cdots\!65}{17\!\cdots\!88}a^{3}-\frac{15\!\cdots\!27}{62\!\cdots\!60}a^{2}+\frac{63\!\cdots\!91}{34\!\cdots\!90}a-\frac{10\!\cdots\!53}{11\!\cdots\!10}$, $\frac{88\!\cdots\!47}{34\!\cdots\!80}a^{31}-\frac{19\!\cdots\!17}{71\!\cdots\!40}a^{30}+\frac{48\!\cdots\!05}{34\!\cdots\!48}a^{29}-\frac{11\!\cdots\!97}{21\!\cdots\!28}a^{28}+\frac{73\!\cdots\!77}{43\!\cdots\!56}a^{27}-\frac{14\!\cdots\!19}{27\!\cdots\!84}a^{26}+\frac{25\!\cdots\!59}{17\!\cdots\!24}a^{25}-\frac{68\!\cdots\!09}{17\!\cdots\!40}a^{24}+\frac{87\!\cdots\!19}{86\!\cdots\!20}a^{23}-\frac{33\!\cdots\!97}{13\!\cdots\!20}a^{22}+\frac{79\!\cdots\!27}{14\!\cdots\!60}a^{21}-\frac{18\!\cdots\!91}{17\!\cdots\!40}a^{20}+\frac{35\!\cdots\!39}{17\!\cdots\!40}a^{19}-\frac{50\!\cdots\!33}{13\!\cdots\!20}a^{18}+\frac{19\!\cdots\!09}{34\!\cdots\!80}a^{17}-\frac{20\!\cdots\!33}{24\!\cdots\!20}a^{16}+\frac{82\!\cdots\!91}{68\!\cdots\!96}a^{15}-\frac{35\!\cdots\!69}{19\!\cdots\!60}a^{14}+\frac{76\!\cdots\!73}{34\!\cdots\!80}a^{13}-\frac{15\!\cdots\!57}{86\!\cdots\!20}a^{12}+\frac{29\!\cdots\!41}{34\!\cdots\!80}a^{11}-\frac{15\!\cdots\!33}{27\!\cdots\!84}a^{10}+\frac{10\!\cdots\!27}{86\!\cdots\!20}a^{9}+\frac{26\!\cdots\!31}{86\!\cdots\!20}a^{8}-\frac{88\!\cdots\!33}{17\!\cdots\!40}a^{7}+\frac{39\!\cdots\!33}{49\!\cdots\!40}a^{6}-\frac{11\!\cdots\!77}{17\!\cdots\!80}a^{5}+\frac{43\!\cdots\!91}{87\!\cdots\!40}a^{4}+\frac{30\!\cdots\!39}{54\!\cdots\!90}a^{3}-\frac{31\!\cdots\!07}{62\!\cdots\!60}a^{2}+\frac{40\!\cdots\!61}{44\!\cdots\!64}a+\frac{43\!\cdots\!21}{11\!\cdots\!10}$, $\frac{12\!\cdots\!61}{27\!\cdots\!40}a^{31}-\frac{70\!\cdots\!61}{13\!\cdots\!20}a^{30}+\frac{98\!\cdots\!09}{34\!\cdots\!48}a^{29}-\frac{15\!\cdots\!51}{13\!\cdots\!92}a^{28}+\frac{20\!\cdots\!15}{55\!\cdots\!68}a^{27}-\frac{31\!\cdots\!55}{27\!\cdots\!84}a^{26}+\frac{22\!\cdots\!89}{68\!\cdots\!96}a^{25}-\frac{61\!\cdots\!61}{68\!\cdots\!60}a^{24}+\frac{63\!\cdots\!13}{27\!\cdots\!40}a^{23}-\frac{77\!\cdots\!07}{13\!\cdots\!20}a^{22}+\frac{53\!\cdots\!87}{43\!\cdots\!60}a^{21}-\frac{77\!\cdots\!93}{29\!\cdots\!20}a^{20}+\frac{13\!\cdots\!49}{27\!\cdots\!40}a^{19}-\frac{12\!\cdots\!83}{13\!\cdots\!20}a^{18}+\frac{25\!\cdots\!37}{17\!\cdots\!40}a^{17}-\frac{46\!\cdots\!97}{21\!\cdots\!80}a^{16}+\frac{17\!\cdots\!63}{55\!\cdots\!68}a^{15}-\frac{91\!\cdots\!39}{19\!\cdots\!60}a^{14}+\frac{20\!\cdots\!73}{34\!\cdots\!80}a^{13}-\frac{19\!\cdots\!13}{34\!\cdots\!80}a^{12}+\frac{93\!\cdots\!73}{27\!\cdots\!40}a^{11}-\frac{67\!\cdots\!21}{27\!\cdots\!84}a^{10}+\frac{30\!\cdots\!27}{86\!\cdots\!20}a^{9}-\frac{87\!\cdots\!87}{17\!\cdots\!60}a^{8}-\frac{74\!\cdots\!07}{68\!\cdots\!60}a^{7}+\frac{93\!\cdots\!43}{49\!\cdots\!40}a^{6}-\frac{80\!\cdots\!07}{61\!\cdots\!80}a^{5}+\frac{11\!\cdots\!61}{87\!\cdots\!40}a^{4}+\frac{82\!\cdots\!69}{87\!\cdots\!40}a^{3}-\frac{88\!\cdots\!71}{89\!\cdots\!80}a^{2}+\frac{53\!\cdots\!39}{15\!\cdots\!74}a-\frac{33\!\cdots\!19}{11\!\cdots\!10}$, $\frac{50\!\cdots\!49}{28\!\cdots\!80}a^{31}-\frac{21\!\cdots\!63}{19\!\cdots\!60}a^{30}-\frac{21\!\cdots\!61}{24\!\cdots\!32}a^{29}+\frac{23\!\cdots\!47}{98\!\cdots\!28}a^{28}-\frac{12\!\cdots\!11}{93\!\cdots\!84}a^{27}+\frac{19\!\cdots\!11}{39\!\cdots\!12}a^{26}-\frac{39\!\cdots\!77}{24\!\cdots\!32}a^{25}+\frac{24\!\cdots\!27}{49\!\cdots\!40}a^{24}-\frac{27\!\cdots\!53}{19\!\cdots\!60}a^{23}+\frac{74\!\cdots\!13}{19\!\cdots\!60}a^{22}-\frac{48\!\cdots\!37}{49\!\cdots\!40}a^{21}+\frac{11\!\cdots\!13}{49\!\cdots\!40}a^{20}-\frac{98\!\cdots\!81}{19\!\cdots\!60}a^{19}+\frac{28\!\cdots\!39}{28\!\cdots\!80}a^{18}-\frac{18\!\cdots\!25}{98\!\cdots\!28}a^{17}+\frac{40\!\cdots\!81}{12\!\cdots\!60}a^{16}-\frac{19\!\cdots\!83}{39\!\cdots\!12}a^{15}+\frac{13\!\cdots\!47}{19\!\cdots\!60}a^{14}-\frac{26\!\cdots\!83}{25\!\cdots\!80}a^{13}+\frac{39\!\cdots\!43}{24\!\cdots\!20}a^{12}-\frac{33\!\cdots\!41}{19\!\cdots\!60}a^{11}+\frac{20\!\cdots\!89}{19\!\cdots\!60}a^{10}-\frac{19\!\cdots\!91}{49\!\cdots\!64}a^{9}+\frac{23\!\cdots\!73}{24\!\cdots\!20}a^{8}-\frac{73\!\cdots\!03}{49\!\cdots\!40}a^{7}-\frac{55\!\cdots\!99}{49\!\cdots\!40}a^{6}+\frac{69\!\cdots\!11}{12\!\cdots\!60}a^{5}-\frac{52\!\cdots\!43}{87\!\cdots\!40}a^{4}+\frac{19\!\cdots\!69}{12\!\cdots\!92}a^{3}+\frac{18\!\cdots\!69}{62\!\cdots\!60}a^{2}-\frac{54\!\cdots\!67}{15\!\cdots\!40}a+\frac{14\!\cdots\!01}{11\!\cdots\!10}$, $\frac{18\!\cdots\!87}{39\!\cdots\!20}a^{31}-\frac{23\!\cdots\!01}{42\!\cdots\!60}a^{30}+\frac{15\!\cdots\!49}{49\!\cdots\!64}a^{29}-\frac{25\!\cdots\!33}{19\!\cdots\!56}a^{28}+\frac{48\!\cdots\!03}{11\!\cdots\!32}a^{27}-\frac{26\!\cdots\!47}{19\!\cdots\!56}a^{26}+\frac{38\!\cdots\!17}{98\!\cdots\!28}a^{25}-\frac{10\!\cdots\!67}{98\!\cdots\!80}a^{24}+\frac{15\!\cdots\!89}{56\!\cdots\!60}a^{23}-\frac{83\!\cdots\!99}{12\!\cdots\!60}a^{22}+\frac{75\!\cdots\!21}{49\!\cdots\!40}a^{21}-\frac{31\!\cdots\!93}{98\!\cdots\!80}a^{20}+\frac{24\!\cdots\!31}{39\!\cdots\!20}a^{19}-\frac{40\!\cdots\!49}{35\!\cdots\!60}a^{18}+\frac{18\!\cdots\!87}{98\!\cdots\!28}a^{17}-\frac{13\!\cdots\!27}{49\!\cdots\!40}a^{16}+\frac{32\!\cdots\!29}{78\!\cdots\!24}a^{15}-\frac{30\!\cdots\!59}{49\!\cdots\!40}a^{14}+\frac{13\!\cdots\!71}{15\!\cdots\!20}a^{13}-\frac{42\!\cdots\!13}{49\!\cdots\!40}a^{12}+\frac{23\!\cdots\!31}{39\!\cdots\!20}a^{11}-\frac{41\!\cdots\!81}{98\!\cdots\!80}a^{10}+\frac{30\!\cdots\!99}{49\!\cdots\!64}a^{9}-\frac{23\!\cdots\!43}{49\!\cdots\!40}a^{8}-\frac{92\!\cdots\!17}{98\!\cdots\!80}a^{7}+\frac{32\!\cdots\!03}{12\!\cdots\!60}a^{6}-\frac{29\!\cdots\!63}{12\!\cdots\!60}a^{5}+\frac{18\!\cdots\!11}{21\!\cdots\!60}a^{4}+\frac{13\!\cdots\!55}{25\!\cdots\!84}a^{3}-\frac{10\!\cdots\!59}{78\!\cdots\!70}a^{2}+\frac{16\!\cdots\!01}{15\!\cdots\!40}a-\frac{17\!\cdots\!14}{56\!\cdots\!55}$, $\frac{26\!\cdots\!77}{27\!\cdots\!40}a^{31}-\frac{14\!\cdots\!31}{13\!\cdots\!20}a^{30}+\frac{47\!\cdots\!19}{86\!\cdots\!12}a^{29}-\frac{29\!\cdots\!27}{13\!\cdots\!92}a^{28}+\frac{38\!\cdots\!63}{55\!\cdots\!68}a^{27}-\frac{59\!\cdots\!97}{27\!\cdots\!84}a^{26}+\frac{42\!\cdots\!99}{68\!\cdots\!96}a^{25}-\frac{11\!\cdots\!37}{68\!\cdots\!60}a^{24}+\frac{11\!\cdots\!13}{27\!\cdots\!40}a^{23}-\frac{14\!\cdots\!49}{13\!\cdots\!20}a^{22}+\frac{19\!\cdots\!79}{86\!\cdots\!20}a^{21}-\frac{32\!\cdots\!23}{68\!\cdots\!60}a^{20}+\frac{25\!\cdots\!61}{27\!\cdots\!40}a^{19}-\frac{23\!\cdots\!89}{13\!\cdots\!20}a^{18}+\frac{94\!\cdots\!55}{34\!\cdots\!48}a^{17}-\frac{28\!\cdots\!23}{70\!\cdots\!20}a^{16}+\frac{32\!\cdots\!95}{55\!\cdots\!68}a^{15}-\frac{25\!\cdots\!79}{28\!\cdots\!80}a^{14}+\frac{40\!\cdots\!57}{34\!\cdots\!80}a^{13}-\frac{38\!\cdots\!83}{34\!\cdots\!80}a^{12}+\frac{22\!\cdots\!61}{27\!\cdots\!40}a^{11}-\frac{97\!\cdots\!87}{13\!\cdots\!20}a^{10}+\frac{30\!\cdots\!63}{34\!\cdots\!48}a^{9}-\frac{94\!\cdots\!33}{34\!\cdots\!80}a^{8}-\frac{11\!\cdots\!07}{68\!\cdots\!60}a^{7}+\frac{15\!\cdots\!81}{49\!\cdots\!40}a^{6}-\frac{18\!\cdots\!57}{61\!\cdots\!80}a^{5}+\frac{12\!\cdots\!77}{87\!\cdots\!40}a^{4}+\frac{19\!\cdots\!09}{17\!\cdots\!88}a^{3}-\frac{14\!\cdots\!93}{89\!\cdots\!80}a^{2}+\frac{23\!\cdots\!34}{17\!\cdots\!95}a-\frac{58\!\cdots\!09}{11\!\cdots\!10}$, $\frac{46\!\cdots\!29}{44\!\cdots\!28}a^{31}-\frac{56\!\cdots\!59}{44\!\cdots\!80}a^{30}+\frac{90\!\cdots\!07}{11\!\cdots\!48}a^{29}-\frac{36\!\cdots\!95}{11\!\cdots\!32}a^{28}+\frac{51\!\cdots\!05}{44\!\cdots\!28}a^{27}-\frac{33\!\cdots\!69}{89\!\cdots\!56}a^{26}+\frac{12\!\cdots\!03}{11\!\cdots\!32}a^{25}-\frac{85\!\cdots\!19}{27\!\cdots\!08}a^{24}+\frac{18\!\cdots\!23}{22\!\cdots\!40}a^{23}-\frac{18\!\cdots\!07}{89\!\cdots\!56}a^{22}+\frac{53\!\cdots\!69}{11\!\cdots\!20}a^{21}-\frac{71\!\cdots\!21}{69\!\cdots\!52}a^{20}+\frac{46\!\cdots\!87}{22\!\cdots\!40}a^{19}-\frac{17\!\cdots\!03}{44\!\cdots\!80}a^{18}+\frac{78\!\cdots\!57}{11\!\cdots\!20}a^{17}-\frac{89\!\cdots\!67}{79\!\cdots\!80}a^{16}+\frac{76\!\cdots\!71}{44\!\cdots\!28}a^{15}-\frac{32\!\cdots\!39}{12\!\cdots\!08}a^{14}+\frac{40\!\cdots\!21}{11\!\cdots\!20}a^{13}-\frac{12\!\cdots\!23}{27\!\cdots\!80}a^{12}+\frac{19\!\cdots\!97}{44\!\cdots\!28}a^{11}-\frac{15\!\cdots\!07}{44\!\cdots\!80}a^{10}+\frac{16\!\cdots\!27}{55\!\cdots\!60}a^{9}-\frac{74\!\cdots\!89}{27\!\cdots\!80}a^{8}-\frac{12\!\cdots\!37}{34\!\cdots\!60}a^{7}+\frac{24\!\cdots\!67}{31\!\cdots\!52}a^{6}-\frac{78\!\cdots\!73}{56\!\cdots\!20}a^{5}+\frac{70\!\cdots\!47}{56\!\cdots\!92}a^{4}-\frac{19\!\cdots\!57}{71\!\cdots\!40}a^{3}-\frac{13\!\cdots\!37}{20\!\cdots\!40}a^{2}+\frac{22\!\cdots\!43}{31\!\cdots\!60}a-\frac{91\!\cdots\!61}{36\!\cdots\!90}$, $\frac{11\!\cdots\!25}{55\!\cdots\!68}a^{31}-\frac{16\!\cdots\!97}{68\!\cdots\!96}a^{30}+\frac{23\!\cdots\!07}{17\!\cdots\!24}a^{29}-\frac{75\!\cdots\!31}{13\!\cdots\!92}a^{28}+\frac{10\!\cdots\!23}{55\!\cdots\!68}a^{27}-\frac{19\!\cdots\!93}{34\!\cdots\!48}a^{26}+\frac{11\!\cdots\!65}{68\!\cdots\!96}a^{25}-\frac{62\!\cdots\!21}{13\!\cdots\!92}a^{24}+\frac{64\!\cdots\!89}{55\!\cdots\!68}a^{23}-\frac{39\!\cdots\!25}{13\!\cdots\!92}a^{22}+\frac{44\!\cdots\!79}{68\!\cdots\!96}a^{21}-\frac{18\!\cdots\!51}{13\!\cdots\!92}a^{20}+\frac{14\!\cdots\!05}{55\!\cdots\!68}a^{19}-\frac{67\!\cdots\!93}{13\!\cdots\!92}a^{18}+\frac{56\!\cdots\!17}{68\!\cdots\!96}a^{17}-\frac{11\!\cdots\!05}{98\!\cdots\!28}a^{16}+\frac{98\!\cdots\!15}{55\!\cdots\!68}a^{15}-\frac{75\!\cdots\!49}{28\!\cdots\!08}a^{14}+\frac{15\!\cdots\!13}{43\!\cdots\!56}a^{13}-\frac{25\!\cdots\!81}{68\!\cdots\!96}a^{12}+\frac{16\!\cdots\!73}{55\!\cdots\!68}a^{11}-\frac{75\!\cdots\!79}{34\!\cdots\!48}a^{10}+\frac{42\!\cdots\!07}{17\!\cdots\!24}a^{9}-\frac{10\!\cdots\!75}{68\!\cdots\!96}a^{8}-\frac{51\!\cdots\!39}{13\!\cdots\!92}a^{7}+\frac{20\!\cdots\!71}{21\!\cdots\!68}a^{6}-\frac{11\!\cdots\!99}{10\!\cdots\!84}a^{5}+\frac{55\!\cdots\!81}{87\!\cdots\!44}a^{4}+\frac{14\!\cdots\!47}{76\!\cdots\!56}a^{3}-\frac{52\!\cdots\!41}{89\!\cdots\!28}a^{2}+\frac{15\!\cdots\!79}{31\!\cdots\!48}a-\frac{27\!\cdots\!77}{11\!\cdots\!91}$, $\frac{35\!\cdots\!59}{27\!\cdots\!40}a^{31}-\frac{43\!\cdots\!45}{27\!\cdots\!84}a^{30}+\frac{33\!\cdots\!89}{34\!\cdots\!48}a^{29}-\frac{55\!\cdots\!05}{13\!\cdots\!92}a^{28}+\frac{77\!\cdots\!85}{55\!\cdots\!68}a^{27}-\frac{12\!\cdots\!83}{27\!\cdots\!84}a^{26}+\frac{88\!\cdots\!91}{68\!\cdots\!96}a^{25}-\frac{24\!\cdots\!39}{68\!\cdots\!60}a^{24}+\frac{51\!\cdots\!79}{55\!\cdots\!68}a^{23}-\frac{14\!\cdots\!81}{59\!\cdots\!40}a^{22}+\frac{18\!\cdots\!47}{34\!\cdots\!48}a^{21}-\frac{79\!\cdots\!81}{68\!\cdots\!60}a^{20}+\frac{63\!\cdots\!43}{27\!\cdots\!40}a^{19}-\frac{59\!\cdots\!39}{13\!\cdots\!20}a^{18}+\frac{64\!\cdots\!91}{86\!\cdots\!20}a^{17}-\frac{11\!\cdots\!61}{98\!\cdots\!28}a^{16}+\frac{95\!\cdots\!53}{55\!\cdots\!68}a^{15}-\frac{52\!\cdots\!51}{19\!\cdots\!60}a^{14}+\frac{57\!\cdots\!67}{14\!\cdots\!60}a^{13}-\frac{31\!\cdots\!59}{68\!\cdots\!96}a^{12}+\frac{10\!\cdots\!67}{27\!\cdots\!40}a^{11}-\frac{38\!\cdots\!33}{13\!\cdots\!20}a^{10}+\frac{28\!\cdots\!57}{86\!\cdots\!20}a^{9}-\frac{13\!\cdots\!73}{34\!\cdots\!80}a^{8}-\frac{95\!\cdots\!01}{13\!\cdots\!92}a^{7}+\frac{52\!\cdots\!87}{49\!\cdots\!40}a^{6}-\frac{67\!\cdots\!25}{43\!\cdots\!72}a^{5}+\frac{84\!\cdots\!39}{87\!\cdots\!40}a^{4}+\frac{89\!\cdots\!59}{87\!\cdots\!40}a^{3}-\frac{67\!\cdots\!43}{89\!\cdots\!80}a^{2}+\frac{78\!\cdots\!33}{11\!\cdots\!10}a-\frac{50\!\cdots\!67}{22\!\cdots\!82}$, $\frac{15\!\cdots\!13}{13\!\cdots\!20}a^{31}-\frac{96\!\cdots\!49}{68\!\cdots\!60}a^{30}+\frac{29\!\cdots\!13}{34\!\cdots\!48}a^{29}-\frac{24\!\cdots\!33}{68\!\cdots\!96}a^{28}+\frac{33\!\cdots\!27}{27\!\cdots\!84}a^{27}-\frac{22\!\cdots\!75}{59\!\cdots\!24}a^{26}+\frac{81\!\cdots\!93}{74\!\cdots\!88}a^{25}-\frac{44\!\cdots\!21}{14\!\cdots\!60}a^{24}+\frac{10\!\cdots\!57}{13\!\cdots\!20}a^{23}-\frac{13\!\cdots\!51}{68\!\cdots\!60}a^{22}+\frac{74\!\cdots\!19}{17\!\cdots\!40}a^{21}-\frac{30\!\cdots\!17}{34\!\cdots\!80}a^{20}+\frac{24\!\cdots\!09}{13\!\cdots\!20}a^{19}-\frac{96\!\cdots\!77}{29\!\cdots\!20}a^{18}+\frac{18\!\cdots\!41}{34\!\cdots\!48}a^{17}-\frac{96\!\cdots\!67}{12\!\cdots\!60}a^{16}+\frac{30\!\cdots\!99}{27\!\cdots\!84}a^{15}-\frac{16\!\cdots\!87}{98\!\cdots\!80}a^{14}+\frac{21\!\cdots\!29}{86\!\cdots\!20}a^{13}-\frac{58\!\cdots\!39}{21\!\cdots\!80}a^{12}+\frac{27\!\cdots\!29}{13\!\cdots\!20}a^{11}-\frac{85\!\cdots\!53}{68\!\cdots\!60}a^{10}+\frac{60\!\cdots\!71}{34\!\cdots\!48}a^{9}-\frac{52\!\cdots\!59}{21\!\cdots\!80}a^{8}-\frac{95\!\cdots\!43}{34\!\cdots\!80}a^{7}+\frac{71\!\cdots\!53}{12\!\cdots\!40}a^{6}-\frac{24\!\cdots\!63}{30\!\cdots\!40}a^{5}+\frac{26\!\cdots\!33}{43\!\cdots\!20}a^{4}+\frac{16\!\cdots\!81}{87\!\cdots\!44}a^{3}-\frac{58\!\cdots\!33}{13\!\cdots\!60}a^{2}+\frac{15\!\cdots\!66}{39\!\cdots\!85}a-\frac{15\!\cdots\!26}{56\!\cdots\!55}$, $\frac{39\!\cdots\!91}{27\!\cdots\!40}a^{31}-\frac{23\!\cdots\!97}{13\!\cdots\!20}a^{30}+\frac{34\!\cdots\!11}{34\!\cdots\!48}a^{29}-\frac{55\!\cdots\!09}{13\!\cdots\!92}a^{28}+\frac{76\!\cdots\!41}{55\!\cdots\!68}a^{27}-\frac{12\!\cdots\!23}{27\!\cdots\!84}a^{26}+\frac{88\!\cdots\!63}{68\!\cdots\!96}a^{25}-\frac{24\!\cdots\!31}{68\!\cdots\!60}a^{24}+\frac{11\!\cdots\!97}{11\!\cdots\!80}a^{23}-\frac{31\!\cdots\!67}{13\!\cdots\!20}a^{22}+\frac{91\!\cdots\!11}{17\!\cdots\!40}a^{21}-\frac{78\!\cdots\!89}{68\!\cdots\!60}a^{20}+\frac{62\!\cdots\!51}{27\!\cdots\!40}a^{19}-\frac{11\!\cdots\!23}{27\!\cdots\!84}a^{18}+\frac{64\!\cdots\!33}{86\!\cdots\!20}a^{17}-\frac{57\!\cdots\!67}{49\!\cdots\!40}a^{16}+\frac{98\!\cdots\!25}{55\!\cdots\!68}a^{15}-\frac{53\!\cdots\!59}{19\!\cdots\!60}a^{14}+\frac{13\!\cdots\!57}{34\!\cdots\!80}a^{13}-\frac{16\!\cdots\!21}{34\!\cdots\!80}a^{12}+\frac{12\!\cdots\!03}{27\!\cdots\!40}a^{11}-\frac{62\!\cdots\!93}{13\!\cdots\!20}a^{10}+\frac{11\!\cdots\!29}{21\!\cdots\!80}a^{9}-\frac{39\!\cdots\!99}{68\!\cdots\!96}a^{8}+\frac{13\!\cdots\!51}{68\!\cdots\!60}a^{7}+\frac{31\!\cdots\!29}{70\!\cdots\!20}a^{6}-\frac{51\!\cdots\!23}{76\!\cdots\!60}a^{5}+\frac{38\!\cdots\!23}{12\!\cdots\!20}a^{4}+\frac{13\!\cdots\!47}{87\!\cdots\!40}a^{3}-\frac{34\!\cdots\!77}{12\!\cdots\!92}a^{2}+\frac{39\!\cdots\!43}{39\!\cdots\!85}a+\frac{16\!\cdots\!57}{11\!\cdots\!10}$ (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 5074359259636.912 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 5074359259636.912 \cdot 192}{8\cdot\sqrt{16911935728484512440926445363543525554439219897696256}}\cr\approx \mathstrut & 5.52552676969832 \end{aligned}\] (assuming GRH)
Galois group
$D_4^2:C_2^3$ (as 32T12882):
A solvable group of order 512 |
The 80 conjugacy class representatives for $D_4^2:C_2^3$ |
Character table for $D_4^2:C_2^3$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{4}$ | ${\href{/padicField/5.4.0.1}{4} }^{4}{,}\,{\href{/padicField/5.2.0.1}{2} }^{8}$ | R | ${\href{/padicField/11.4.0.1}{4} }^{8}$ | ${\href{/padicField/13.8.0.1}{8} }^{4}$ | ${\href{/padicField/17.4.0.1}{4} }^{8}$ | ${\href{/padicField/19.4.0.1}{4} }^{8}$ | R | ${\href{/padicField/29.4.0.1}{4} }^{4}{,}\,{\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.4.0.1}{4} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.4.0.1}{4} }^{8}$ | ${\href{/padicField/41.2.0.1}{2} }^{16}$ | ${\href{/padicField/43.8.0.1}{8} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}{,}\,{\href{/padicField/47.2.0.1}{2} }^{8}$ | ${\href{/padicField/53.8.0.1}{8} }^{4}$ | ${\href{/padicField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\) | 2.4.8.2 | $x^{4} + 2 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ |
2.4.8.2 | $x^{4} + 2 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
2.4.8.2 | $x^{4} + 2 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
2.4.8.2 | $x^{4} + 2 x^{2} + 4 x + 2$ | $4$ | $1$ | $8$ | $C_2^2$ | $[2, 3]$ | |
2.8.16.6 | $x^{8} + 4 x^{7} + 24 x^{6} + 48 x^{5} + 56 x^{4} + 56 x^{3} + 64 x^{2} + 48 x + 36$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
2.8.16.6 | $x^{8} + 4 x^{7} + 24 x^{6} + 48 x^{5} + 56 x^{4} + 56 x^{3} + 64 x^{2} + 48 x + 36$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
\(7\) | 7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(23\) | 23.4.2.1 | $x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
23.4.0.1 | $x^{4} + 3 x^{2} + 19 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
23.4.0.1 | $x^{4} + 3 x^{2} + 19 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
23.4.2.1 | $x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
23.4.2.1 | $x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
23.4.0.1 | $x^{4} + 3 x^{2} + 19 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
23.4.2.1 | $x^{4} + 42 x^{3} + 497 x^{2} + 1176 x + 10467$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
23.4.0.1 | $x^{4} + 3 x^{2} + 19 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(137\) | 137.2.0.1 | $x^{2} + 131 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
137.2.0.1 | $x^{2} + 131 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
137.2.1.1 | $x^{2} + 137$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
137.2.0.1 | $x^{2} + 131 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
137.2.1.1 | $x^{2} + 137$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
137.2.1.1 | $x^{2} + 137$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
137.2.1.1 | $x^{2} + 137$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
137.2.0.1 | $x^{2} + 131 x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
137.4.0.1 | $x^{4} + x^{2} + 95 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
137.4.0.1 | $x^{4} + x^{2} + 95 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
137.4.0.1 | $x^{4} + x^{2} + 95 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
137.4.0.1 | $x^{4} + x^{2} + 95 x + 3$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |