Normalized defining polynomial
\( x^{32} - 1889 x^{24} + 3502785 x^{16} - 123797504 x^{8} + 4294967296 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{441} a^{16} + \frac{158}{441} a^{8} - \frac{173}{441}$, $\frac{1}{1764} a^{17} + \frac{599}{1764} a^{9} + \frac{709}{1764} a$, $\frac{1}{7056} a^{18} - \frac{2929}{7056} a^{10} - \frac{1055}{7056} a^{2}$, $\frac{1}{28224} a^{19} + \frac{4127}{28224} a^{11} + \frac{13057}{28224} a^{3}$, $\frac{1}{112896} a^{20} - \frac{52321}{112896} a^{12} - \frac{15167}{112896} a^{4}$, $\frac{1}{451584} a^{21} + \frac{60575}{451584} a^{13} + \frac{210625}{451584} a^{5}$, $\frac{1}{1806336} a^{22} - \frac{391009}{1806336} a^{14} - \frac{240959}{1806336} a^{6}$, $\frac{1}{7225344} a^{23} - \frac{2197345}{7225344} a^{15} + \frac{3371713}{7225344} a^{7}$, $\frac{1}{101235306332160} a^{24} + \frac{9055}{28901376} a^{16} + \frac{1638401}{28901376} a^{8} - \frac{66554804}{1544728185}$, $\frac{1}{404941225328640} a^{25} + \frac{9055}{115605504} a^{17} + \frac{30539777}{115605504} a^{9} + \frac{1478173381}{6178912740} a$, $\frac{1}{1619764901314560} a^{26} + \frac{9055}{462422016} a^{18} - \frac{200671231}{462422016} a^{10} + \frac{1478173381}{24715650960} a^{2}$, $\frac{1}{6479059605258240} a^{27} + \frac{9055}{1849688064} a^{19} - \frac{663093247}{1849688064} a^{11} - \frac{47953128539}{98862603840} a^{3}$, $\frac{1}{25916238421032960} a^{28} + \frac{9055}{7398752256} a^{20} + \frac{1186594817}{7398752256} a^{12} - \frac{47953128539}{395450415360} a^{4}$, $\frac{1}{103664953684131840} a^{29} + \frac{9055}{29595009024} a^{21} - \frac{6212157439}{29595009024} a^{13} - \frac{47953128539}{1581801661440} a^{5}$, $\frac{1}{414659814736527360} a^{30} + \frac{9055}{118380036096} a^{22} + \frac{23382851585}{118380036096} a^{14} + \frac{3115650194341}{6327206645760} a^{6}$, $\frac{1}{1658639258946109440} a^{31} + \frac{9055}{473520144384} a^{23} - \frac{94997184511}{473520144384} a^{15} + \frac{9442856840101}{25308826583040} a^{7}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{6178912740} a^{25} - \frac{3956947021}{6178912740} a \) (order $48$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |