Properties

Label 32.0.15729269092...0000.6
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}$
Root discriminant $61.29$
Ramified primes $2, 3, 5, 7$
Class number $5120$ (GRH)
Class group $[4, 4, 4, 80]$ (GRH)
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![625, 0, 0, 0, 913625, 0, 0, 0, 27249400, 0, 0, 0, 17806495, 0, 0, 0, 3693351, 0, 0, 0, 298319, 0, 0, 0, 10576, 0, 0, 0, 169, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 169*x^28 + 10576*x^24 + 298319*x^20 + 3693351*x^16 + 17806495*x^12 + 27249400*x^8 + 913625*x^4 + 625)
 
gp: K = bnfinit(x^32 + 169*x^28 + 10576*x^24 + 298319*x^20 + 3693351*x^16 + 17806495*x^12 + 27249400*x^8 + 913625*x^4 + 625, 1)
 

Normalized defining polynomial

\( x^{32} + 169 x^{28} + 10576 x^{24} + 298319 x^{20} + 3693351 x^{16} + 17806495 x^{12} + 27249400 x^{8} + 913625 x^{4} + 625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $61.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(643,·)$, $\chi_{840}(517,·)$, $\chi_{840}(13,·)$, $\chi_{840}(533,·)$, $\chi_{840}(407,·)$, $\chi_{840}(799,·)$, $\chi_{840}(419,·)$, $\chi_{840}(421,·)$, $\chi_{840}(41,·)$, $\chi_{840}(433,·)$, $\chi_{840}(307,·)$, $\chi_{840}(827,·)$, $\chi_{840}(671,·)$, $\chi_{840}(323,·)$, $\chi_{840}(197,·)$, $\chi_{840}(839,·)$, $\chi_{840}(461,·)$, $\chi_{840}(589,·)$, $\chi_{840}(209,·)$, $\chi_{840}(211,·)$, $\chi_{840}(727,·)$, $\chi_{840}(169,·)$, $\chi_{840}(223,·)$, $\chi_{840}(97,·)$, $\chi_{840}(379,·)$, $\chi_{840}(743,·)$, $\chi_{840}(617,·)$, $\chi_{840}(113,·)$, $\chi_{840}(629,·)$, $\chi_{840}(631,·)$, $\chi_{840}(251,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{11} a^{16} + \frac{2}{11} a^{12} - \frac{5}{11} a^{8} + \frac{4}{11} a^{4} - \frac{3}{11}$, $\frac{1}{11} a^{17} + \frac{2}{11} a^{13} - \frac{5}{11} a^{9} + \frac{4}{11} a^{5} - \frac{3}{11} a$, $\frac{1}{11} a^{18} + \frac{2}{11} a^{14} - \frac{5}{11} a^{10} + \frac{4}{11} a^{6} - \frac{3}{11} a^{2}$, $\frac{1}{11} a^{19} + \frac{2}{11} a^{15} - \frac{5}{11} a^{11} + \frac{4}{11} a^{7} - \frac{3}{11} a^{3}$, $\frac{1}{55} a^{20} - \frac{1}{55} a^{16} + \frac{1}{5} a^{12} + \frac{19}{55} a^{8} - \frac{4}{55} a^{4} + \frac{4}{11}$, $\frac{1}{55} a^{21} - \frac{1}{55} a^{17} + \frac{1}{5} a^{13} + \frac{19}{55} a^{9} - \frac{4}{55} a^{5} + \frac{4}{11} a$, $\frac{1}{275} a^{22} + \frac{4}{275} a^{18} - \frac{34}{275} a^{14} + \frac{104}{275} a^{10} + \frac{16}{275} a^{6} + \frac{1}{55} a^{2}$, $\frac{1}{275} a^{23} + \frac{4}{275} a^{19} - \frac{34}{275} a^{15} + \frac{104}{275} a^{11} + \frac{16}{275} a^{7} + \frac{1}{55} a^{3}$, $\frac{1}{1375} a^{24} + \frac{9}{1375} a^{20} - \frac{14}{1375} a^{16} + \frac{19}{125} a^{12} + \frac{261}{1375} a^{8} + \frac{127}{275} a^{4} + \frac{1}{55}$, $\frac{1}{1375} a^{25} + \frac{9}{1375} a^{21} - \frac{14}{1375} a^{17} + \frac{19}{125} a^{13} + \frac{261}{1375} a^{9} + \frac{127}{275} a^{5} + \frac{1}{55} a$, $\frac{1}{1375} a^{26} - \frac{1}{1375} a^{22} - \frac{54}{1375} a^{18} + \frac{549}{1375} a^{14} + \frac{596}{1375} a^{10} + \frac{19}{55} a^{6} - \frac{1}{55} a^{2}$, $\frac{1}{6875} a^{27} + \frac{9}{6875} a^{23} + \frac{111}{6875} a^{19} + \frac{1834}{6875} a^{15} - \frac{3114}{6875} a^{11} - \frac{48}{1375} a^{7} + \frac{41}{275} a^{3}$, $\frac{1}{35048238376085990213125} a^{28} - \frac{898617594696839071}{35048238376085990213125} a^{24} - \frac{268020438122020545609}{35048238376085990213125} a^{20} + \frac{1290043049817094820454}{35048238376085990213125} a^{16} - \frac{17318765469311396401709}{35048238376085990213125} a^{12} + \frac{2560048927491311688026}{7009647675217198042625} a^{8} - \frac{35835007906544325191}{127448139549403600775} a^{4} - \frac{105803872681382604101}{280385907008687921705}$, $\frac{1}{175241191880429951065625} a^{29} + \frac{50080638225064601239}{175241191880429951065625} a^{25} + \frac{1465274259749868424931}{175241191880429951065625} a^{21} - \frac{7070554904623781390386}{175241191880429951065625} a^{17} - \frac{40437857983573209582294}{175241191880429951065625} a^{13} - \frac{11601988339238416430092}{35048238376085990213125} a^{9} - \frac{3126673198911200777717}{7009647675217198042625} a^{5} + \frac{541632676229587687836}{1401929535043439608525} a$, $\frac{1}{175241191880429951065625} a^{30} + \frac{50080638225064601239}{175241191880429951065625} a^{26} + \frac{190792864255832417181}{175241191880429951065625} a^{22} + \frac{3762536957075524675489}{175241191880429951065625} a^{18} + \frac{34756544350574914874956}{175241191880429951065625} a^{14} + \frac{16054257942982164938083}{35048238376085990213125} a^{10} - \frac{1393378501039311807177}{7009647675217198042625} a^{6} + \frac{108309001761615445201}{1401929535043439608525} a^{2}$, $\frac{1}{175241191880429951065625} a^{31} - \frac{898617594696839071}{175241191880429951065625} a^{27} - \frac{268020438122020545609}{175241191880429951065625} a^{23} - \frac{1896160438917995198921}{175241191880429951065625} a^{19} - \frac{58739410822867566653584}{175241191880429951065625} a^{15} + \frac{12755900091443599750026}{35048238376085990213125} a^{11} - \frac{903977645169601980201}{7009647675217198042625} a^{7} - \frac{309720895960428365341}{1401929535043439608525} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{4}\times C_{4}\times C_{80}$, which has order $5120$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{8502279378494152}{1969002155959887090625} a^{29} - \frac{1437010891306466803}{1969002155959887090625} a^{25} - \frac{89940919768392726412}{1969002155959887090625} a^{21} - \frac{2537658871046480013928}{1969002155959887090625} a^{17} - \frac{31436240593152759366962}{1969002155959887090625} a^{13} - \frac{30359371789125389703336}{393800431191977418125} a^{9} - \frac{9345039124505107511181}{78760086238395483625} a^{5} - \frac{98193826400113164492}{15752017247679096725} a \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2196477959693.257 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{210}) \), \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{42}) \), \(\Q(\sqrt{-42}) \), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{105})\), \(\Q(i, \sqrt{210})\), \(\Q(\sqrt{2}, \sqrt{105})\), \(\Q(\sqrt{2}, \sqrt{-105})\), \(\Q(\sqrt{-2}, \sqrt{105})\), \(\Q(\sqrt{-2}, \sqrt{-105})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{10})\), \(\Q(i, \sqrt{21})\), \(\Q(i, \sqrt{42})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-5})\), \(\Q(\sqrt{2}, \sqrt{21})\), \(\Q(\sqrt{2}, \sqrt{-21})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{-5})\), \(\Q(\sqrt{-2}, \sqrt{21})\), \(\Q(\sqrt{-2}, \sqrt{-21})\), \(\Q(\sqrt{5}, \sqrt{21})\), \(\Q(\sqrt{-5}, \sqrt{-21})\), \(\Q(\sqrt{10}, \sqrt{42})\), \(\Q(\sqrt{-10}, \sqrt{-42})\), \(\Q(\sqrt{5}, \sqrt{-21})\), \(\Q(\sqrt{-5}, \sqrt{21})\), \(\Q(\sqrt{10}, \sqrt{-42})\), \(\Q(\sqrt{-10}, \sqrt{42})\), \(\Q(\sqrt{5}, \sqrt{42})\), \(\Q(\sqrt{-5}, \sqrt{-42})\), \(\Q(\sqrt{10}, \sqrt{21})\), \(\Q(\sqrt{-10}, \sqrt{-21})\), \(\Q(\sqrt{5}, \sqrt{-42})\), \(\Q(\sqrt{-5}, \sqrt{42})\), \(\Q(\sqrt{10}, \sqrt{-21})\), \(\Q(\sqrt{-10}, \sqrt{21})\), 4.4.392000.1, 4.0.392000.2, 4.4.6125.1, 4.0.98000.1, 4.4.72000.1, 4.0.72000.2, \(\Q(\zeta_{15})^+\), 4.0.18000.1, 8.0.7965941760000.69, 8.0.40960000.1, 8.0.12745506816.8, 8.0.31116960000.8, 8.0.7965941760000.13, 8.0.7965941760000.68, 8.0.7965941760000.39, 8.8.497871360000.1, 8.0.7965941760000.33, 8.0.7965941760000.62, 8.0.7965941760000.40, 8.0.497871360000.13, 8.0.7965941760000.4, 8.0.7965941760000.55, 8.0.7965941760000.12, 8.0.2458624000000.7, 8.0.9604000000.1, 8.0.82944000000.7, 8.0.324000000.1, 8.8.153664000000.1, 8.0.2458624000000.6, 8.8.5184000000.1, 8.0.82944000000.6, 8.0.2458624000000.5, 8.0.153664000000.3, 8.0.82944000000.5, 8.0.5184000000.2, 8.8.12446784000000.3, 8.0.12446784000000.1, 8.8.3038765625.1, 8.0.777924000000.1, 8.0.199148544000000.118, 8.0.199148544000000.120, 8.0.777924000000.2, 8.0.777924000000.7, 8.8.12446784000000.6, 8.0.199148544000000.220, 8.8.12446784000000.4, 8.0.199148544000000.140, 8.0.199148544000000.219, 8.0.12446784000000.13, 8.0.12446784000000.2, 8.0.199148544000000.142, 16.0.63456228123711897600000000.6, 16.0.6044831973376000000000000.1, 16.0.6879707136000000000000.3, 16.0.39660142577319936000000000000.61, 16.0.605165749776000000000000.3, 16.0.39660142577319936000000000000.45, 16.0.39660142577319936000000000000.63, 16.16.154922431942656000000000000.1, 16.0.39660142577319936000000000000.32, 16.0.39660142577319936000000000000.39, 16.0.39660142577319936000000000000.27, 16.0.39660142577319936000000000000.33, 16.0.154922431942656000000000000.9, 16.0.39660142577319936000000000000.28, 16.0.39660142577319936000000000000.40

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$7$7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$