Properties

Label 32.0.15729269092...0000.5
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}$
Root discriminant $61.29$
Ramified primes $2, 3, 5, 7$
Class number $10240$ (GRH)
Class group $[4, 4, 4, 160]$ (GRH)
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![625, 0, 0, 0, 393875, 0, 0, 0, 1339275, 0, 0, 0, 1498330, 0, 0, 0, 691751, 0, 0, 0, 137746, 0, 0, 0, 10506, 0, 0, 0, 236, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 236*x^28 + 10506*x^24 + 137746*x^20 + 691751*x^16 + 1498330*x^12 + 1339275*x^8 + 393875*x^4 + 625)
 
gp: K = bnfinit(x^32 + 236*x^28 + 10506*x^24 + 137746*x^20 + 691751*x^16 + 1498330*x^12 + 1339275*x^8 + 393875*x^4 + 625, 1)
 

Normalized defining polynomial

\( x^{32} + 236 x^{28} + 10506 x^{24} + 137746 x^{20} + 691751 x^{16} + 1498330 x^{12} + 1339275 x^{8} + 393875 x^{4} + 625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $61.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(43,·)$, $\chi_{840}(139,·)$, $\chi_{840}(659,·)$, $\chi_{840}(407,·)$, $\chi_{840}(797,·)$, $\chi_{840}(799,·)$, $\chi_{840}(547,·)$, $\chi_{840}(293,·)$, $\chi_{840}(41,·)$, $\chi_{840}(811,·)$, $\chi_{840}(29,·)$, $\chi_{840}(433,·)$, $\chi_{840}(181,·)$, $\chi_{840}(671,·)$, $\chi_{840}(701,·)$, $\chi_{840}(839,·)$, $\chi_{840}(587,·)$, $\chi_{840}(209,·)$, $\chi_{840}(83,·)$, $\chi_{840}(727,·)$, $\chi_{840}(169,·)$, $\chi_{840}(349,·)$, $\chi_{840}(223,·)$, $\chi_{840}(97,·)$, $\chi_{840}(743,·)$, $\chi_{840}(617,·)$, $\chi_{840}(491,·)$, $\chi_{840}(113,·)$, $\chi_{840}(757,·)$, $\chi_{840}(631,·)$, $\chi_{840}(253,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{5} a^{20} + \frac{1}{5} a^{16} + \frac{1}{5} a^{12} + \frac{1}{5} a^{8} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{21} + \frac{1}{5} a^{17} + \frac{1}{5} a^{13} + \frac{1}{5} a^{9} + \frac{1}{5} a^{5}$, $\frac{1}{5} a^{22} + \frac{1}{5} a^{18} + \frac{1}{5} a^{14} + \frac{1}{5} a^{10} + \frac{1}{5} a^{6}$, $\frac{1}{25} a^{23} + \frac{1}{25} a^{19} - \frac{4}{25} a^{15} + \frac{11}{25} a^{11} - \frac{9}{25} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{24} + \frac{1}{25} a^{20} - \frac{4}{25} a^{16} + \frac{11}{25} a^{12} - \frac{9}{25} a^{8} - \frac{1}{5} a^{4}$, $\frac{1}{25} a^{25} + \frac{1}{25} a^{21} - \frac{4}{25} a^{17} + \frac{11}{25} a^{13} - \frac{9}{25} a^{9} - \frac{1}{5} a^{5}$, $\frac{1}{125} a^{26} - \frac{4}{125} a^{22} - \frac{59}{125} a^{18} + \frac{6}{125} a^{14} + \frac{36}{125} a^{10} + \frac{8}{25} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{125} a^{27} + \frac{1}{125} a^{23} - \frac{54}{125} a^{19} - \frac{14}{125} a^{15} - \frac{34}{125} a^{11} - \frac{1}{25} a^{7}$, $\frac{1}{2242516497189755429938625} a^{28} - \frac{13230029602328663029754}{2242516497189755429938625} a^{24} + \frac{180099419666891406042816}{2242516497189755429938625} a^{20} - \frac{371345557514255928091369}{2242516497189755429938625} a^{16} - \frac{1052180002458774395496964}{2242516497189755429938625} a^{12} - \frac{9352958749349083509368}{23605436812523741367775} a^{8} + \frac{3395842044159075505211}{89700659887590217197545} a^{4} - \frac{7813241897297668447422}{17940131977518043439509}$, $\frac{1}{11212582485948777149693125} a^{29} + \frac{76470630285261554167791}{11212582485948777149693125} a^{25} - \frac{178703219883469462747364}{11212582485948777149693125} a^{21} - \frac{1178651496502567882869274}{11212582485948777149693125} a^{17} - \frac{2756492540322988522250319}{11212582485948777149693125} a^{13} - \frac{22572003364362378675322}{118027184062618706838875} a^{9} - \frac{32484421910877011373807}{448503299437951085987725} a^{5} - \frac{25753373874815711886931}{89700659887590217197545} a$, $\frac{1}{11212582485948777149693125} a^{30} - \frac{13230029602328663029754}{11212582485948777149693125} a^{26} + \frac{180099419666891406042816}{11212582485948777149693125} a^{22} + \frac{4113687436865254931785881}{11212582485948777149693125} a^{18} - \frac{3294696499648529825435589}{11212582485948777149693125} a^{14} - \frac{56563832374396566244918}{118027184062618706838875} a^{10} - \frac{176005477731021358889879}{448503299437951085987725} a^{6} - \frac{8738701170466751065288}{17940131977518043439509} a^{2}$, $\frac{1}{11212582485948777149693125} a^{31} - \frac{13230029602328663029754}{11212582485948777149693125} a^{27} + \frac{180099419666891406042816}{11212582485948777149693125} a^{23} + \frac{4113687436865254931785881}{11212582485948777149693125} a^{19} - \frac{3294696499648529825435589}{11212582485948777149693125} a^{15} - \frac{56563832374396566244918}{118027184062618706838875} a^{11} - \frac{176005477731021358889879}{448503299437951085987725} a^{7} - \frac{8738701170466751065288}{17940131977518043439509} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{4}\times C_{4}\times C_{160}$, which has order $10240$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{2198369948712473}{37183285256952525625} a^{30} + \frac{518844669500441928}{37183285256952525625} a^{26} + \frac{23103012220152817688}{37183285256952525625} a^{22} + \frac{303127084902514156708}{37183285256952525625} a^{18} + \frac{1524857515813747103448}{37183285256952525625} a^{14} + \frac{663086681384178716988}{7436657051390505125} a^{10} + \frac{23965094275504764408}{297466282055620205} a^{6} + \frac{7485450216817807444}{297466282055620205} a^{2} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 2194214366954.93 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{70}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{21}) \), \(\Q(i, \sqrt{70})\), \(\Q(i, \sqrt{6})\), \(\Q(i, \sqrt{105})\), \(\Q(\sqrt{6}, \sqrt{-70})\), \(\Q(\sqrt{-6}, \sqrt{-70})\), \(\Q(\sqrt{6}, \sqrt{70})\), \(\Q(\sqrt{-6}, \sqrt{70})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{14})\), \(\Q(i, \sqrt{30})\), \(\Q(i, \sqrt{21})\), \(\Q(\sqrt{5}, \sqrt{-14})\), \(\Q(\sqrt{-5}, \sqrt{14})\), \(\Q(\sqrt{-21}, \sqrt{30})\), \(\Q(\sqrt{21}, \sqrt{-30})\), \(\Q(\sqrt{5}, \sqrt{14})\), \(\Q(\sqrt{-5}, \sqrt{-14})\), \(\Q(\sqrt{21}, \sqrt{30})\), \(\Q(\sqrt{-21}, \sqrt{-30})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{-5}, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{-14})\), \(\Q(\sqrt{6}, \sqrt{14})\), \(\Q(\sqrt{5}, \sqrt{-6})\), \(\Q(\sqrt{-5}, \sqrt{-6})\), \(\Q(\sqrt{-6}, \sqrt{-14})\), \(\Q(\sqrt{-6}, \sqrt{14})\), \(\Q(\sqrt{5}, \sqrt{-21})\), \(\Q(\sqrt{-5}, \sqrt{21})\), \(\Q(\sqrt{-14}, \sqrt{30})\), \(\Q(\sqrt{14}, \sqrt{-30})\), \(\Q(\sqrt{5}, \sqrt{21})\), \(\Q(\sqrt{-5}, \sqrt{-21})\), \(\Q(\sqrt{-14}, \sqrt{-30})\), \(\Q(\sqrt{14}, \sqrt{30})\), 4.0.18000.1, \(\Q(\zeta_{15})^+\), 4.4.3528000.1, 4.0.3528000.1, 4.0.8000.2, 4.4.8000.1, 4.4.6125.1, 4.0.98000.1, 8.0.7965941760000.44, 8.0.98344960000.8, 8.0.7965941760000.21, 8.0.3317760000.9, 8.0.12745506816.1, 8.0.31116960000.8, 8.0.7965941760000.3, 8.0.7965941760000.27, 8.0.7965941760000.8, 8.0.497871360000.6, 8.0.7965941760000.25, 8.8.497871360000.2, 8.0.7965941760000.23, 8.0.7965941760000.18, 8.0.7965941760000.5, 8.0.324000000.1, 8.0.199148544000000.177, 8.0.1024000000.2, 8.0.9604000000.1, 8.0.199148544000000.17, 8.0.12446784000000.16, 8.0.153664000000.1, 8.0.2458624000000.2, 8.0.199148544000000.163, 8.8.12446784000000.5, 8.0.2458624000000.1, 8.8.153664000000.2, 8.0.82944000000.4, 8.8.5184000000.2, 8.8.12446784000000.1, 8.0.199148544000000.168, 8.0.82944000000.3, 8.0.5184000000.1, 8.0.199148544000000.67, 8.0.12446784000000.6, 8.0.777924000000.2, 8.0.777924000000.7, 8.0.199148544000000.138, 8.0.199148544000000.224, 8.0.777924000000.1, 8.8.3038765625.1, 8.8.12446784000000.2, 8.0.12446784000000.5, 16.0.63456228123711897600000000.3, 16.0.39660142577319936000000000000.49, 16.0.6044831973376000000000000.4, 16.0.6879707136000000000000.2, 16.0.39660142577319936000000000000.22, 16.0.605165749776000000000000.3, 16.0.39660142577319936000000000000.25, 16.0.39660142577319936000000000000.17, 16.0.39660142577319936000000000000.29, 16.0.39660142577319936000000000000.5, 16.0.154922431942656000000000000.4, 16.0.39660142577319936000000000000.6, 16.16.154922431942656000000000000.2, 16.0.39660142577319936000000000000.16, 16.0.39660142577319936000000000000.26

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
$7$7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$