Properties

Label 32.0.15729269092...0000.4
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}$
Root discriminant $61.29$
Ramified primes $2, 3, 5, 7$
Class number Not computed
Class group Not computed
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![33232930569601, 0, 0, 0, 678223072849, 0, 0, 0, 0, 0, 0, 0, -282475249, 0, 0, 0, -5764801, 0, 0, 0, -117649, 0, 0, 0, 0, 0, 0, 0, 49, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 49*x^28 - 117649*x^20 - 5764801*x^16 - 282475249*x^12 + 678223072849*x^4 + 33232930569601)
 
gp: K = bnfinit(x^32 + 49*x^28 - 117649*x^20 - 5764801*x^16 - 282475249*x^12 + 678223072849*x^4 + 33232930569601, 1)
 

Normalized defining polynomial

\( x^{32} + 49 x^{28} - 117649 x^{20} - 5764801 x^{16} - 282475249 x^{12} + 678223072849 x^{4} + 33232930569601 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $61.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(643,·)$, $\chi_{840}(517,·)$, $\chi_{840}(139,·)$, $\chi_{840}(13,·)$, $\chi_{840}(407,·)$, $\chi_{840}(281,·)$, $\chi_{840}(797,·)$, $\chi_{840}(799,·)$, $\chi_{840}(673,·)$, $\chi_{840}(419,·)$, $\chi_{840}(293,·)$, $\chi_{840}(169,·)$, $\chi_{840}(811,·)$, $\chi_{840}(307,·)$, $\chi_{840}(181,·)$, $\chi_{840}(449,·)$, $\chi_{840}(71,·)$, $\chi_{840}(587,·)$, $\chi_{840}(461,·)$, $\chi_{840}(463,·)$, $\chi_{840}(337,·)$, $\chi_{840}(83,·)$, $\chi_{840}(349,·)$, $\chi_{840}(743,·)$, $\chi_{840}(617,·)$, $\chi_{840}(239,·)$, $\chi_{840}(113,·)$, $\chi_{840}(629,·)$, $\chi_{840}(631,·)$, $\chi_{840}(251,·)$, $\chi_{840}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $\frac{1}{7} a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{49} a^{4}$, $\frac{1}{49} a^{5}$, $\frac{1}{343} a^{6}$, $\frac{1}{343} a^{7}$, $\frac{1}{2401} a^{8}$, $\frac{1}{2401} a^{9}$, $\frac{1}{16807} a^{10}$, $\frac{1}{16807} a^{11}$, $\frac{1}{117649} a^{12}$, $\frac{1}{117649} a^{13}$, $\frac{1}{823543} a^{14}$, $\frac{1}{823543} a^{15}$, $\frac{1}{5764801} a^{16}$, $\frac{1}{5764801} a^{17}$, $\frac{1}{40353607} a^{18}$, $\frac{1}{40353607} a^{19}$, $\frac{1}{282475249} a^{20}$, $\frac{1}{282475249} a^{21}$, $\frac{1}{1977326743} a^{22}$, $\frac{1}{1977326743} a^{23}$, $\frac{1}{13841287201} a^{24}$, $\frac{1}{13841287201} a^{25}$, $\frac{1}{96889010407} a^{26}$, $\frac{1}{96889010407} a^{27}$, $\frac{1}{678223072849} a^{28}$, $\frac{1}{678223072849} a^{29}$, $\frac{1}{4747561509943} a^{30}$, $\frac{1}{4747561509943} a^{31}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1}{4747561509943} a^{30} + \frac{1}{1977326743} a^{22} + \frac{1}{40353607} a^{18} + \frac{1}{823543} a^{14} - \frac{1}{343} a^{6} - \frac{1}{7} a^{2} \) (order $60$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{70}) \), \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{210}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{42}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-15}) \), \(\Q(i, \sqrt{70})\), \(\Q(i, \sqrt{210})\), \(\Q(\zeta_{12})\), \(\Q(\sqrt{3}, \sqrt{-70})\), \(\Q(\sqrt{-3}, \sqrt{-70})\), \(\Q(\sqrt{-3}, \sqrt{70})\), \(\Q(\sqrt{3}, \sqrt{70})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{14})\), \(\Q(i, \sqrt{42})\), \(\Q(i, \sqrt{15})\), \(\Q(\sqrt{5}, \sqrt{-14})\), \(\Q(\sqrt{-5}, \sqrt{14})\), \(\Q(\sqrt{15}, \sqrt{-42})\), \(\Q(\sqrt{-15}, \sqrt{42})\), \(\Q(\sqrt{5}, \sqrt{14})\), \(\Q(\sqrt{-5}, \sqrt{-14})\), \(\Q(\sqrt{-15}, \sqrt{-42})\), \(\Q(\sqrt{15}, \sqrt{42})\), \(\Q(\sqrt{5}, \sqrt{-42})\), \(\Q(\sqrt{-5}, \sqrt{42})\), \(\Q(\sqrt{-14}, \sqrt{15})\), \(\Q(\sqrt{14}, \sqrt{-15})\), \(\Q(\sqrt{5}, \sqrt{42})\), \(\Q(\sqrt{-5}, \sqrt{-42})\), \(\Q(\sqrt{-14}, \sqrt{-15})\), \(\Q(\sqrt{14}, \sqrt{15})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{-5})\), \(\Q(\sqrt{3}, \sqrt{-14})\), \(\Q(\sqrt{3}, \sqrt{14})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{-5})\), \(\Q(\sqrt{-3}, \sqrt{-14})\), \(\Q(\sqrt{-3}, \sqrt{14})\), 4.4.392000.1, 4.0.392000.2, \(\Q(\zeta_{5})\), \(\Q(\zeta_{20})^+\), 4.0.18000.1, \(\Q(\zeta_{15})^+\), 4.4.3528000.1, 4.0.3528000.1, 8.0.7965941760000.70, 8.0.98344960000.8, 8.0.7965941760000.63, 8.0.7965941760000.68, 8.0.7965941760000.41, 8.0.12960000.1, 8.0.12745506816.9, 8.0.7965941760000.53, 8.0.7965941760000.64, 8.0.497871360000.19, 8.0.7965941760000.61, 8.0.497871360000.20, 8.0.7965941760000.49, 8.8.7965941760000.2, 8.0.7965941760000.42, 8.0.2458624000000.7, \(\Q(\zeta_{20})\), 8.0.324000000.1, 8.0.199148544000000.177, 8.0.153664000000.5, 8.0.2458624000000.4, 8.0.199148544000000.17, 8.0.12446784000000.16, 8.8.2458624000000.2, 8.0.153664000000.6, 8.0.199148544000000.163, 8.8.12446784000000.5, 8.0.199148544000000.219, 8.0.12446784000000.13, 8.0.12446784000000.19, 8.0.199148544000000.160, 8.8.12446784000000.6, 8.0.199148544000000.220, 8.0.12446784000000.20, 8.8.199148544000000.7, 8.8.199148544000000.5, 8.0.199148544000000.137, 8.0.324000000.3, \(\Q(\zeta_{60})^+\), 8.0.12446784000000.18, 8.0.12446784000000.17, \(\Q(\zeta_{15})\), 8.0.324000000.2, 16.0.63456228123711897600000000.17, 16.0.6044831973376000000000000.6, 16.0.39660142577319936000000000000.49, 16.0.39660142577319936000000000000.45, 16.0.39660142577319936000000000000.66, 16.0.39660142577319936000000000000.62, \(\Q(\zeta_{60})\), 16.0.39660142577319936000000000000.44, 16.0.39660142577319936000000000000.48, 16.0.154922431942656000000000000.2, 16.0.39660142577319936000000000000.43, 16.0.39660142577319936000000000000.47, 16.0.154922431942656000000000000.6, 16.16.39660142577319936000000000000.1, 16.0.39660142577319936000000000000.46

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$7$7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$