Properties

Label 32.0.15729269092...0000.3
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}$
Root discriminant $61.29$
Ramified primes $2, 3, 5, 7$
Class number $5120$ (GRH)
Class group $[4, 4, 4, 80]$ (GRH)
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 0, 0, -23, 0, 0, 0, 528, 0, 0, 0, -12121, 0, 0, 0, 278255, 0, 0, 0, -12121, 0, 0, 0, 528, 0, 0, 0, -23, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 23*x^28 + 528*x^24 - 12121*x^20 + 278255*x^16 - 12121*x^12 + 528*x^8 - 23*x^4 + 1)
 
gp: K = bnfinit(x^32 - 23*x^28 + 528*x^24 - 12121*x^20 + 278255*x^16 - 12121*x^12 + 528*x^8 - 23*x^4 + 1, 1)
 

Normalized defining polynomial

\( x^{32} - 23 x^{28} + 528 x^{24} - 12121 x^{20} + 278255 x^{16} - 12121 x^{12} + 528 x^{8} - 23 x^{4} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $61.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(643,·)$, $\chi_{840}(517,·)$, $\chi_{840}(139,·)$, $\chi_{840}(13,·)$, $\chi_{840}(659,·)$, $\chi_{840}(533,·)$, $\chi_{840}(29,·)$, $\chi_{840}(799,·)$, $\chi_{840}(673,·)$, $\chi_{840}(167,·)$, $\chi_{840}(41,·)$, $\chi_{840}(811,·)$, $\chi_{840}(307,·)$, $\chi_{840}(181,·)$, $\chi_{840}(671,·)$, $\chi_{840}(701,·)$, $\chi_{840}(323,·)$, $\chi_{840}(197,·)$, $\chi_{840}(839,·)$, $\chi_{840}(713,·)$, $\chi_{840}(503,·)$, $\chi_{840}(463,·)$, $\chi_{840}(337,·)$, $\chi_{840}(169,·)$, $\chi_{840}(349,·)$, $\chi_{840}(827,·)$, $\chi_{840}(209,·)$, $\chi_{840}(491,·)$, $\chi_{840}(631,·)$, $\chi_{840}(377,·)$, $\chi_{840}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{5} a^{16} + \frac{1}{5} a^{12} + \frac{1}{5} a^{8} + \frac{1}{5} a^{4} + \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{1}{5} a^{13} + \frac{1}{5} a^{9} + \frac{1}{5} a^{5} + \frac{1}{5} a$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{14} + \frac{1}{5} a^{10} + \frac{1}{5} a^{6} + \frac{1}{5} a^{2}$, $\frac{1}{5} a^{19} + \frac{1}{5} a^{15} + \frac{1}{5} a^{11} + \frac{1}{5} a^{7} + \frac{1}{5} a^{3}$, $\frac{1}{1391275} a^{20} - \frac{290376}{1391275}$, $\frac{1}{1391275} a^{21} - \frac{290376}{1391275} a$, $\frac{1}{1391275} a^{22} - \frac{290376}{1391275} a^{2}$, $\frac{1}{1391275} a^{23} - \frac{290376}{1391275} a^{3}$, $\frac{1}{1391275} a^{24} - \frac{290376}{1391275} a^{4}$, $\frac{1}{1391275} a^{25} - \frac{290376}{1391275} a^{5}$, $\frac{1}{1391275} a^{26} - \frac{290376}{1391275} a^{6}$, $\frac{1}{1391275} a^{27} - \frac{290376}{1391275} a^{7}$, $\frac{1}{1391275} a^{28} - \frac{290376}{1391275} a^{8}$, $\frac{1}{1391275} a^{29} - \frac{290376}{1391275} a^{9}$, $\frac{1}{1391275} a^{30} - \frac{290376}{1391275} a^{10}$, $\frac{1}{1391275} a^{31} - \frac{290376}{1391275} a^{11}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}\times C_{4}\times C_{4}\times C_{80}$, which has order $5120$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{1}{1391275} a^{22} - \frac{6665999}{1391275} a^{2} \) (order $20$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 28949477018021.215 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{70}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-21}) \), \(\Q(i, \sqrt{70})\), \(\Q(i, \sqrt{6})\), \(\Q(i, \sqrt{105})\), \(\Q(\sqrt{6}, \sqrt{70})\), \(\Q(\sqrt{-6}, \sqrt{70})\), \(\Q(\sqrt{6}, \sqrt{-70})\), \(\Q(\sqrt{-6}, \sqrt{-70})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{14})\), \(\Q(i, \sqrt{30})\), \(\Q(i, \sqrt{21})\), \(\Q(\sqrt{5}, \sqrt{14})\), \(\Q(\sqrt{-5}, \sqrt{-14})\), \(\Q(\sqrt{21}, \sqrt{30})\), \(\Q(\sqrt{-21}, \sqrt{-30})\), \(\Q(\sqrt{5}, \sqrt{-14})\), \(\Q(\sqrt{-5}, \sqrt{14})\), \(\Q(\sqrt{-21}, \sqrt{30})\), \(\Q(\sqrt{21}, \sqrt{-30})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{-5}, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{14})\), \(\Q(\sqrt{6}, \sqrt{-14})\), \(\Q(\sqrt{5}, \sqrt{-6})\), \(\Q(\sqrt{-5}, \sqrt{-6})\), \(\Q(\sqrt{-6}, \sqrt{14})\), \(\Q(\sqrt{-6}, \sqrt{-14})\), \(\Q(\sqrt{5}, \sqrt{21})\), \(\Q(\sqrt{-5}, \sqrt{-21})\), \(\Q(\sqrt{14}, \sqrt{30})\), \(\Q(\sqrt{-14}, \sqrt{-30})\), \(\Q(\sqrt{5}, \sqrt{-21})\), \(\Q(\sqrt{-5}, \sqrt{21})\), \(\Q(\sqrt{14}, \sqrt{-30})\), \(\Q(\sqrt{-14}, \sqrt{30})\), 4.0.72000.2, 4.4.72000.1, 4.0.55125.1, 4.4.882000.1, \(\Q(\zeta_{5})\), \(\Q(\zeta_{20})^+\), 4.0.392000.2, 4.4.392000.1, 8.0.7965941760000.44, 8.0.98344960000.8, 8.0.7965941760000.21, 8.0.3317760000.9, 8.0.12745506816.1, 8.0.31116960000.8, 8.0.7965941760000.3, 8.8.497871360000.2, 8.0.7965941760000.23, 8.0.7965941760000.18, 8.0.7965941760000.5, 8.0.7965941760000.27, 8.0.7965941760000.8, 8.0.497871360000.6, 8.0.7965941760000.25, 8.0.82944000000.7, 8.0.777924000000.8, \(\Q(\zeta_{20})\), 8.0.2458624000000.7, 8.0.12446784000000.4, 8.8.199148544000000.3, 8.0.153664000000.6, 8.8.2458624000000.2, 8.0.199148544000000.16, 8.0.12446784000000.3, 8.0.153664000000.5, 8.0.2458624000000.4, 8.0.5184000000.6, 8.8.82944000000.2, 8.0.12446784000000.9, 8.8.199148544000000.10, 8.0.82944000000.2, 8.0.5184000000.5, 8.0.12446784000000.8, 8.0.199148544000000.193, 8.0.12446784000000.1, 8.8.12446784000000.3, 8.0.3038765625.3, 8.8.777924000000.2, 8.0.199148544000000.118, 8.0.199148544000000.120, 8.0.777924000000.6, 8.0.777924000000.10, 16.0.63456228123711897600000000.3, 16.0.39660142577319936000000000000.2, 16.0.6044831973376000000000000.6, 16.0.6879707136000000000000.9, 16.0.39660142577319936000000000000.20, 16.0.39660142577319936000000000000.61, 16.0.605165749776000000000000.6, 16.0.154922431942656000000000000.1, 16.16.39660142577319936000000000000.7, 16.0.39660142577319936000000000000.9, 16.0.39660142577319936000000000000.14, 16.0.39660142577319936000000000000.13, 16.0.39660142577319936000000000000.7, 16.0.39660142577319936000000000000.56, 16.0.154922431942656000000000000.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.2$x^{4} - 20$$4$$1$$3$$C_4$$[\ ]_{4}$
$7$7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$