Properties

Label 32.0.15729269092...000.24
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}$
Root discriminant $61.29$
Ramified primes $2, 3, 5, 7$
Class number $1280$ (GRH)
Class group $[2, 2, 2, 2, 2, 40]$ (GRH)
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![519885601, 0, 0, 0, -280197189, 0, 0, 0, 89094515, 0, 0, 0, -17206446, 0, 0, 0, 2174199, 0, 0, 0, -162606, 0, 0, 0, 5930, 0, 0, 0, -84, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 84*x^28 + 5930*x^24 - 162606*x^20 + 2174199*x^16 - 17206446*x^12 + 89094515*x^8 - 280197189*x^4 + 519885601)
 
gp: K = bnfinit(x^32 - 84*x^28 + 5930*x^24 - 162606*x^20 + 2174199*x^16 - 17206446*x^12 + 89094515*x^8 - 280197189*x^4 + 519885601, 1)
 

Normalized defining polynomial

\( x^{32} - 84 x^{28} + 5930 x^{24} - 162606 x^{20} + 2174199 x^{16} - 17206446 x^{12} + 89094515 x^{8} - 280197189 x^{4} + 519885601 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $61.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(391,·)$, $\chi_{840}(139,·)$, $\chi_{840}(533,·)$, $\chi_{840}(407,·)$, $\chi_{840}(797,·)$, $\chi_{840}(799,·)$, $\chi_{840}(293,·)$, $\chi_{840}(167,·)$, $\chi_{840}(169,·)$, $\chi_{840}(811,·)$, $\chi_{840}(559,·)$, $\chi_{840}(181,·)$, $\chi_{840}(631,·)$, $\chi_{840}(827,·)$, $\chi_{840}(769,·)$, $\chi_{840}(323,·)$, $\chi_{840}(197,·)$, $\chi_{840}(713,·)$, $\chi_{840}(587,·)$, $\chi_{840}(589,·)$, $\chi_{840}(83,·)$, $\chi_{840}(601,·)$, $\chi_{840}(349,·)$, $\chi_{840}(421,·)$, $\chi_{840}(743,·)$, $\chi_{840}(617,·)$, $\chi_{840}(113,·)$, $\chi_{840}(211,·)$, $\chi_{840}(503,·)$, $\chi_{840}(377,·)$, $\chi_{840}(379,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{8} + \frac{1}{3}$, $\frac{1}{3} a^{17} + \frac{1}{3} a^{9} + \frac{1}{3} a$, $\frac{1}{3} a^{18} + \frac{1}{3} a^{10} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{19} + \frac{1}{3} a^{11} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{20} + \frac{1}{3} a^{12} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{21} + \frac{1}{3} a^{13} + \frac{1}{3} a^{5}$, $\frac{1}{3} a^{22} + \frac{1}{3} a^{14} + \frac{1}{3} a^{6}$, $\frac{1}{3} a^{23} + \frac{1}{3} a^{15} + \frac{1}{3} a^{7}$, $\frac{1}{957} a^{24} + \frac{35}{957} a^{20} + \frac{65}{957} a^{16} + \frac{332}{957} a^{12} - \frac{67}{957} a^{8} - \frac{460}{957} a^{4} - \frac{266}{957}$, $\frac{1}{957} a^{25} + \frac{35}{957} a^{21} + \frac{65}{957} a^{17} + \frac{332}{957} a^{13} - \frac{67}{957} a^{9} - \frac{460}{957} a^{5} - \frac{266}{957} a$, $\frac{1}{957} a^{26} + \frac{35}{957} a^{22} + \frac{65}{957} a^{18} + \frac{332}{957} a^{14} - \frac{67}{957} a^{10} - \frac{460}{957} a^{6} - \frac{266}{957} a^{2}$, $\frac{1}{957} a^{27} + \frac{35}{957} a^{23} + \frac{65}{957} a^{19} + \frac{332}{957} a^{15} - \frac{67}{957} a^{11} - \frac{460}{957} a^{7} - \frac{266}{957} a^{3}$, $\frac{1}{237854587632519778405860903} a^{28} - \frac{74869830573914549567609}{237854587632519778405860903} a^{24} + \frac{12867451907543395593305554}{79284862544173259468620301} a^{20} - \frac{192189275493533337898907}{4172887502324908393085279} a^{16} + \frac{137072208671800435150280}{398416394694337987279499} a^{12} + \frac{38209518068678058504209507}{79284862544173259468620301} a^{8} + \frac{103304093955127036247390855}{237854587632519778405860903} a^{4} + \frac{114487810669644294677950028}{237854587632519778405860903}$, $\frac{1}{35916042732510486539284996353} a^{29} - \frac{2924611980145394799073958}{11972014244170162179761665451} a^{25} - \frac{153908089447060720756649821}{3265094793864589685389545123} a^{21} + \frac{119887761355055705290135048}{1890318038553183502067631387} a^{17} - \frac{847330419994120427598472}{16407511526957737112510277} a^{13} - \frac{14525234324914459562669633516}{35916042732510486539284996353} a^{9} + \frac{3350397731768255208771625110}{11972014244170162179761665451} a^{5} - \frac{1139406018594788601933929027}{35916042732510486539284996353} a$, $\frac{1}{5423322452609083467432034449303} a^{30} - \frac{77984262413814123198833616}{1807774150869694489144011483101} a^{26} + \frac{421418260510672954061122044115}{5423322452609083467432034449303} a^{22} - \frac{46648200220696904355791691859}{285438023821530708812212339437} a^{18} - \frac{13199262573515305162770896561}{27252876646276801343879570097} a^{14} + \frac{419582253958208631137340348527}{5423322452609083467432034449303} a^{10} - \frac{73830470400438694953674289021}{164343104624517680831273771191} a^{6} - \frac{2503252853224941849807922128457}{5423322452609083467432034449303} a^{2}$, $\frac{1}{818921690343971603582237201844753} a^{31} - \frac{368589187290470726991417022483}{818921690343971603582237201844753} a^{27} + \frac{4279274388357790280104521516768}{272973896781323867860745733948251} a^{23} + \frac{230418440725621747172734475325}{14367047199017045676881354418329} a^{19} - \frac{421214039645025598763679439557}{1371728124529265667641938361549} a^{15} + \frac{124064006644218637538816506684488}{272973896781323867860745733948251} a^{11} + \frac{132659293481746798698829970235488}{818921690343971603582237201844753} a^{7} - \frac{278730009705392711393214040375454}{818921690343971603582237201844753} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{40}$, which has order $1280$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{2960644082335055}{37159280789898107522671} a^{29} - \frac{594716387905978306}{111477842369694322568013} a^{25} + \frac{42061666494004063375}{111477842369694322568013} a^{21} - \frac{36706906042738985675}{5867254861562859082527} a^{17} + \frac{5309321311837552238995}{111477842369694322568013} a^{13} - \frac{33853676452044864427610}{111477842369694322568013} a^{9} + \frac{10591923570274339227176}{10134349306335847506183} a^{5} - \frac{360363771576335250169900}{111477842369694322568013} a \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 17282058402401.408 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{70}) \), \(\Q(\sqrt{35}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{70})\), \(\Q(i, \sqrt{35})\), \(\Q(\sqrt{-2}, \sqrt{35})\), \(\Q(\sqrt{-2}, \sqrt{-35})\), \(\Q(\sqrt{2}, \sqrt{-35})\), \(\Q(\sqrt{2}, \sqrt{35})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{10})\), \(\Q(i, \sqrt{14})\), \(\Q(i, \sqrt{7})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{-5})\), \(\Q(\sqrt{-2}, \sqrt{7})\), \(\Q(\sqrt{-2}, \sqrt{-7})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-5})\), \(\Q(\sqrt{2}, \sqrt{-7})\), \(\Q(\sqrt{2}, \sqrt{7})\), \(\Q(\sqrt{5}, \sqrt{-14})\), \(\Q(\sqrt{-5}, \sqrt{14})\), \(\Q(\sqrt{7}, \sqrt{-10})\), \(\Q(\sqrt{-7}, \sqrt{10})\), \(\Q(\sqrt{5}, \sqrt{14})\), \(\Q(\sqrt{-5}, \sqrt{-14})\), \(\Q(\sqrt{-7}, \sqrt{-10})\), \(\Q(\sqrt{7}, \sqrt{10})\), \(\Q(\sqrt{5}, \sqrt{7})\), \(\Q(\sqrt{-5}, \sqrt{-7})\), \(\Q(\sqrt{-10}, \sqrt{-14})\), \(\Q(\sqrt{10}, \sqrt{14})\), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\sqrt{-5}, \sqrt{7})\), \(\Q(\sqrt{-10}, \sqrt{14})\), \(\Q(\sqrt{10}, \sqrt{-14})\), 4.0.55125.1, 4.4.882000.1, 4.4.3528000.1, 4.0.3528000.1, 4.4.72000.1, 4.0.72000.2, 4.0.18000.1, \(\Q(\zeta_{15})^+\), 8.0.98344960000.9, 8.0.40960000.1, 8.0.157351936.1, 8.0.98344960000.8, 8.0.98344960000.7, 8.0.384160000.1, 8.0.98344960000.2, 8.0.98344960000.6, 8.0.98344960000.5, 8.0.6146560000.1, 8.0.98344960000.4, 8.0.6146560000.2, 8.0.98344960000.3, 8.8.98344960000.1, 8.0.98344960000.1, 8.0.777924000000.8, 8.0.199148544000000.177, 8.0.82944000000.7, 8.0.324000000.1, 8.0.12446784000000.7, 8.0.199148544000000.169, 8.0.82944000000.5, 8.0.5184000000.2, 8.0.12446784000000.14, 8.8.199148544000000.8, 8.8.5184000000.1, 8.0.82944000000.6, 8.0.12446784000000.3, 8.0.199148544000000.16, 8.0.199148544000000.17, 8.0.12446784000000.16, 8.0.12446784000000.4, 8.8.199148544000000.3, 8.8.12446784000000.5, 8.0.199148544000000.163, 8.0.777924000000.3, 8.8.777924000000.3, 8.8.199148544000000.2, 8.0.199148544000000.157, 8.0.3038765625.2, 8.0.777924000000.4, 8.0.12446784000000.10, 8.0.12446784000000.15, 16.0.9671731157401600000000.1, 16.0.39660142577319936000000000000.60, 16.0.6879707136000000000000.3, 16.0.39660142577319936000000000000.2, 16.0.39660142577319936000000000000.49, 16.0.605165749776000000000000.4, 16.0.39660142577319936000000000000.41, 16.0.39660142577319936000000000000.1, 16.0.39660142577319936000000000000.19, 16.0.154922431942656000000000000.12, 16.0.39660142577319936000000000000.18, 16.0.154922431942656000000000000.13, 16.0.39660142577319936000000000000.69, 16.0.39660142577319936000000000000.10, 16.16.39660142577319936000000000000.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
3.4.2.2$x^{4} - 3 x^{2} + 18$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$7$7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$