Properties

Label 32.0.15729269092...000.23
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}$
Root discriminant $61.29$
Ramified primes $2, 3, 5, 7$
Class number Not computed
Class group Not computed
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![214358881, 0, 0, 0, -710952319, 0, 0, 0, 2295298360, 0, 0, 0, -204396521, 0, 0, 0, 12533799, 0, 0, 0, -412321, 0, 0, 0, 9880, 0, 0, 0, -119, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 119*x^28 + 9880*x^24 - 412321*x^20 + 12533799*x^16 - 204396521*x^12 + 2295298360*x^8 - 710952319*x^4 + 214358881)
 
gp: K = bnfinit(x^32 - 119*x^28 + 9880*x^24 - 412321*x^20 + 12533799*x^16 - 204396521*x^12 + 2295298360*x^8 - 710952319*x^4 + 214358881, 1)
 

Normalized defining polynomial

\( x^{32} - 119 x^{28} + 9880 x^{24} - 412321 x^{20} + 12533799 x^{16} - 204396521 x^{12} + 2295298360 x^{8} - 710952319 x^{4} + 214358881 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $61.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(643,·)$, $\chi_{840}(517,·)$, $\chi_{840}(503,·)$, $\chi_{840}(13,·)$, $\chi_{840}(659,·)$, $\chi_{840}(281,·)$, $\chi_{840}(797,·)$, $\chi_{840}(799,·)$, $\chi_{840}(293,·)$, $\chi_{840}(167,·)$, $\chi_{840}(169,·)$, $\chi_{840}(29,·)$, $\chi_{840}(433,·)$, $\chi_{840}(307,·)$, $\chi_{840}(701,·)$, $\chi_{840}(449,·)$, $\chi_{840}(71,·)$, $\chi_{840}(713,·)$, $\chi_{840}(587,·)$, $\chi_{840}(589,·)$, $\chi_{840}(211,·)$, $\chi_{840}(727,·)$, $\chi_{840}(223,·)$, $\chi_{840}(97,·)$, $\chi_{840}(421,·)$, $\chi_{840}(491,·)$, $\chi_{840}(239,·)$, $\chi_{840}(83,·)$, $\chi_{840}(631,·)$, $\chi_{840}(377,·)$, $\chi_{840}(379,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{11} a^{17} - \frac{5}{11} a^{13} - \frac{1}{11} a^{9} + \frac{2}{11} a^{5} + \frac{5}{11} a$, $\frac{1}{11} a^{18} - \frac{5}{11} a^{14} - \frac{1}{11} a^{10} + \frac{2}{11} a^{6} + \frac{5}{11} a^{2}$, $\frac{1}{11} a^{19} - \frac{5}{11} a^{15} - \frac{1}{11} a^{11} + \frac{2}{11} a^{7} + \frac{5}{11} a^{3}$, $\frac{1}{11} a^{20} - \frac{5}{11} a^{16} - \frac{1}{11} a^{12} + \frac{2}{11} a^{8} + \frac{5}{11} a^{4}$, $\frac{1}{11} a^{21} - \frac{4}{11} a^{13} - \frac{3}{11} a^{9} + \frac{4}{11} a^{5} + \frac{3}{11} a$, $\frac{1}{11} a^{22} - \frac{4}{11} a^{14} - \frac{3}{11} a^{10} + \frac{4}{11} a^{6} + \frac{3}{11} a^{2}$, $\frac{1}{11} a^{23} - \frac{4}{11} a^{15} - \frac{3}{11} a^{11} + \frac{4}{11} a^{7} + \frac{3}{11} a^{3}$, $\frac{1}{5718889} a^{24} - \frac{82223}{5718889} a^{20} - \frac{1137623}{5718889} a^{16} + \frac{489429}{5718889} a^{12} + \frac{2571269}{5718889} a^{8} + \frac{414691}{5718889} a^{4} - \frac{250180}{519899}$, $\frac{1}{5718889} a^{25} - \frac{82223}{5718889} a^{21} - \frac{97825}{5718889} a^{17} + \frac{1009328}{5718889} a^{13} + \frac{1531471}{5718889} a^{9} + \frac{2494287}{5718889} a^{5} + \frac{2447010}{5718889} a$, $\frac{1}{62907779} a^{26} - \frac{82223}{62907779} a^{22} - \frac{1657522}{62907779} a^{18} + \frac{25964480}{62907779} a^{14} + \frac{14528946}{62907779} a^{10} + \frac{22250449}{62907779} a^{6} - \frac{11070364}{62907779} a^{2}$, $\frac{1}{691985569} a^{27} + \frac{5636666}{691985569} a^{23} + \frac{21218034}{691985569} a^{19} + \frac{140342260}{691985569} a^{15} - \frac{277134393}{691985569} a^{11} + \frac{153784896}{691985569} a^{7} - \frac{319890370}{691985569} a^{3}$, $\frac{1}{1717716835846477797220857563101} a^{28} + \frac{114033223912848374268169}{1717716835846477797220857563101} a^{24} + \frac{77892654761026552227194238453}{1717716835846477797220857563101} a^{20} - \frac{24722545893826316678534519521}{59231615029188889559339915969} a^{16} + \frac{721622702604598772677620617865}{1717716835846477797220857563101} a^{12} + \frac{589997015450983266684979676443}{1717716835846477797220857563101} a^{8} - \frac{302278063176266036316919213991}{1717716835846477797220857563101} a^{4} - \frac{367243436920092426856531}{1485093305557289523542659}$, $\frac{1}{18894885194311255769429433194111} a^{29} - \frac{787042231046923251245558}{18894885194311255769429433194111} a^{25} - \frac{4174294091859581519177637617}{18894885194311255769429433194111} a^{21} - \frac{21682969811707707738331749046}{651547765321077785152739075659} a^{17} - \frac{1280950516101341655335807785928}{18894885194311255769429433194111} a^{13} - \frac{7192373028059494024962622424805}{18894885194311255769429433194111} a^{9} + \frac{1978707347093749722413947692899}{18894885194311255769429433194111} a^{5} + \frac{257679829571125697062715172}{1290546082529284595958570671} a$, $\frac{1}{207843737137423813463723765135221} a^{30} - \frac{787042231046923251245558}{207843737137423813463723765135221} a^{26} + \frac{5148976213447573810143395051686}{207843737137423813463723765135221} a^{22} + \frac{37548645217481181821008166923}{7167025418531855636680129832249} a^{18} - \frac{87166792308425231516378685940978}{207843737137423813463723765135221} a^{14} - \frac{43264426580835527766600631249926}{207843737137423813463723765135221} a^{10} + \frac{101606283826189461961223686352757}{207843737137423813463723765135221} a^{6} + \frac{47701084901697038826252959}{117322371139025872359870061} a^{2}$, $\frac{1}{2286281108511661948100961416487431} a^{31} - \frac{787042231046923251245558}{2286281108511661948100961416487431} a^{27} + \frac{5148976213447573810143395051686}{2286281108511661948100961416487431} a^{23} + \frac{1992191941180714537279225393900}{78837279603850412003481428154739} a^{19} - \frac{370590070223094068057820183852643}{2286281108511661948100961416487431} a^{15} - \frac{99949082163769295074888930832259}{2286281108511661948100961416487431} a^{11} + \frac{1046350543541752250432695346058307}{2286281108511661948100961416487431} a^{7} - \frac{4168182911642367467306019891}{14196006907822130555544277381} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{8184204619242290912444619}{2286281108511661948100961416487431} a^{31} + \frac{971534876001797854027658680}{2286281108511661948100961416487431} a^{27} - \frac{80573107729556293214766066251}{2286281108511661948100961416487431} a^{23} + \frac{115539795677410049688995318391}{78837279603850412003481428154739} a^{19} - \frac{101570313606890998988757203748680}{2286281108511661948100961416487431} a^{15} + \frac{1642033186349824494341346652528880}{2286281108511661948100961416487431} a^{11} - \frac{18270397561013005214299301356543459}{2286281108511661948100961416487431} a^{7} + \frac{7937456859927802581597201}{117322371139025872359870061} a^{3} \) (order $24$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{30}) \), \(\Q(\zeta_{8})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{6})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{3})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{10})\), \(\Q(i, \sqrt{15})\), \(\Q(i, \sqrt{30})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-5})\), \(\Q(\sqrt{2}, \sqrt{-15})\), \(\Q(\sqrt{2}, \sqrt{15})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{-5})\), \(\Q(\sqrt{-2}, \sqrt{-15})\), \(\Q(\sqrt{-2}, \sqrt{15})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{-5})\), \(\Q(\sqrt{-3}, \sqrt{10})\), \(\Q(\sqrt{-3}, \sqrt{-10})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{-5})\), \(\Q(\sqrt{3}, \sqrt{10})\), \(\Q(\sqrt{3}, \sqrt{-10})\), \(\Q(\sqrt{5}, \sqrt{-6})\), \(\Q(\sqrt{-5}, \sqrt{-6})\), \(\Q(\sqrt{-6}, \sqrt{10})\), \(\Q(\sqrt{-6}, \sqrt{-10})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{-5}, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{10})\), \(\Q(\sqrt{6}, \sqrt{-10})\), 4.4.3528000.1, 4.0.3528000.1, 4.4.882000.1, 4.0.55125.1, 4.0.392000.2, 4.4.392000.1, 4.0.98000.1, 4.4.6125.1, \(\Q(\zeta_{24})\), 8.0.40960000.1, 8.0.3317760000.4, 8.0.12960000.1, 8.0.3317760000.2, 8.0.3317760000.9, 8.0.3317760000.5, 8.0.207360000.1, 8.0.3317760000.3, 8.8.3317760000.1, 8.0.3317760000.6, 8.0.207360000.2, 8.0.3317760000.8, 8.0.3317760000.7, 8.0.3317760000.1, 8.0.199148544000000.177, 8.0.777924000000.8, 8.0.2458624000000.7, 8.0.9604000000.1, 8.8.199148544000000.8, 8.0.12446784000000.14, 8.0.2458624000000.6, 8.8.153664000000.1, 8.0.12446784000000.7, 8.0.199148544000000.169, 8.0.153664000000.3, 8.0.2458624000000.5, 8.0.12446784000000.17, 8.0.12446784000000.18, 8.0.777924000000.9, 8.0.3038765625.1, 8.8.199148544000000.5, 8.0.199148544000000.137, 8.8.777924000000.1, 8.0.777924000000.5, 8.0.199148544000000.67, 8.0.12446784000000.6, 8.0.199148544000000.193, 8.0.12446784000000.8, 8.8.12446784000000.1, 8.0.199148544000000.168, 8.8.199148544000000.10, 8.0.12446784000000.9, 16.0.11007531417600000000.1, 16.0.39660142577319936000000000000.60, 16.0.6044831973376000000000000.1, 16.0.39660142577319936000000000000.62, 16.0.605165749776000000000000.7, 16.0.39660142577319936000000000000.22, 16.0.39660142577319936000000000000.20, 16.0.39660142577319936000000000000.52, 16.0.154922431942656000000000000.7, 16.16.39660142577319936000000000000.3, 16.0.39660142577319936000000000000.36, 16.0.154922431942656000000000000.16, 16.0.39660142577319936000000000000.53, 16.0.39660142577319936000000000000.8, 16.0.39660142577319936000000000000.21

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$7$7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
7.4.2.2$x^{4} - 7 x^{2} + 147$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$