Normalized defining polynomial
\( x^{32} + 8 x^{30} + 9 x^{28} - 296 x^{26} - 2368 x^{24} - 15632 x^{22} - 16857 x^{20} + 578384 x^{18} + 4620511 x^{16} + 5205456 x^{14} - 1365417 x^{12} - 11395728 x^{10} - 15536448 x^{8} - 17478504 x^{6} + 4782969 x^{4} + 38263752 x^{2} + 43046721 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(840=2^{3}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(517,·)$, $\chi_{840}(391,·)$, $\chi_{840}(13,·)$, $\chi_{840}(659,·)$, $\chi_{840}(281,·)$, $\chi_{840}(797,·)$, $\chi_{840}(671,·)$, $\chi_{840}(673,·)$, $\chi_{840}(547,·)$, $\chi_{840}(293,·)$, $\chi_{840}(167,·)$, $\chi_{840}(169,·)$, $\chi_{840}(43,·)$, $\chi_{840}(559,·)$, $\chi_{840}(181,·)$, $\chi_{840}(827,·)$, $\chi_{840}(449,·)$, $\chi_{840}(323,·)$, $\chi_{840}(839,·)$, $\chi_{840}(461,·)$, $\chi_{840}(337,·)$, $\chi_{840}(211,·)$, $\chi_{840}(727,·)$, $\chi_{840}(349,·)$, $\chi_{840}(223,·)$, $\chi_{840}(617,·)$, $\chi_{840}(491,·)$, $\chi_{840}(113,·)$, $\chi_{840}(629,·)$, $\chi_{840}(503,·)$, $\chi_{840}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{15} + \frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{18} - \frac{1}{9} a^{16} + \frac{1}{9} a^{12} - \frac{1}{9} a^{10} + \frac{1}{9} a^{8} - \frac{1}{9} a^{4} + \frac{1}{9} a^{2}$, $\frac{1}{27} a^{19} - \frac{1}{27} a^{17} - \frac{1}{3} a^{15} + \frac{1}{27} a^{13} - \frac{1}{27} a^{11} + \frac{10}{27} a^{9} + \frac{1}{3} a^{7} - \frac{10}{27} a^{5} + \frac{10}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{198369} a^{20} - \frac{1}{81} a^{18} + \frac{4}{9} a^{16} + \frac{10}{81} a^{14} - \frac{28}{81} a^{12} + \frac{49843}{198369} a^{10} - \frac{4}{9} a^{8} - \frac{19}{81} a^{6} + \frac{37}{81} a^{4} - \frac{4}{9} a^{2} + \frac{729}{2449}$, $\frac{1}{595107} a^{21} - \frac{1}{243} a^{19} + \frac{4}{27} a^{17} + \frac{91}{243} a^{15} + \frac{53}{243} a^{13} + \frac{248212}{595107} a^{11} - \frac{13}{27} a^{9} + \frac{62}{243} a^{7} - \frac{44}{243} a^{5} - \frac{13}{27} a^{3} - \frac{1720}{7347} a$, $\frac{1}{1785321} a^{22} - \frac{1}{1785321} a^{20} + \frac{2}{81} a^{18} + \frac{253}{729} a^{16} - \frac{10}{729} a^{14} + \frac{799237}{1785321} a^{12} - \frac{95879}{198369} a^{10} - \frac{100}{729} a^{8} - \frac{143}{729} a^{6} + \frac{7}{81} a^{4} - \frac{2206}{7347} a^{2} - \frac{81}{2449}$, $\frac{1}{5355963} a^{23} - \frac{1}{5355963} a^{21} + \frac{2}{243} a^{19} + \frac{253}{2187} a^{17} - \frac{10}{2187} a^{15} + \frac{2584558}{5355963} a^{13} - \frac{294248}{595107} a^{11} - \frac{100}{2187} a^{9} - \frac{143}{2187} a^{7} + \frac{88}{243} a^{5} + \frac{5141}{22041} a^{3} - \frac{2530}{7347} a$, $\frac{1}{883733895} a^{24} - \frac{1}{16067889} a^{22} - \frac{1}{1785321} a^{20} - \frac{557}{360855} a^{18} - \frac{2926}{6561} a^{16} - \frac{4805234}{16067889} a^{14} + \frac{11022301}{98192655} a^{12} + \frac{5808608}{16067889} a^{10} + \frac{2773}{6561} a^{8} - \frac{17342}{40095} a^{6} - \frac{92648}{198369} a^{4} + \frac{2422}{7347} a^{2} - \frac{6904}{134695}$, $\frac{1}{2651201685} a^{25} - \frac{1}{48203667} a^{23} - \frac{1}{5355963} a^{21} - \frac{557}{1082565} a^{19} - \frac{2926}{19683} a^{17} - \frac{20873123}{48203667} a^{15} + \frac{11022301}{294577965} a^{13} + \frac{21876497}{48203667} a^{11} + \frac{2773}{19683} a^{9} + \frac{22753}{120285} a^{7} - \frac{291017}{595107} a^{5} + \frac{2422}{22041} a^{3} - \frac{6904}{404085} a$, $\frac{1}{24310551762834975} a^{26} + \frac{11245202}{24310551762834975} a^{24} - \frac{5375614}{49112225783505} a^{22} - \frac{21905917478}{24310551762834975} a^{20} - \frac{177909782464}{9926725913775} a^{18} + \frac{138801095824231}{442010032051545} a^{16} + \frac{1026254499457576}{2701172418092775} a^{14} + \frac{9419489160016598}{24310551762834975} a^{12} + \frac{117104555875978}{442010032051545} a^{10} + \frac{534137011303}{1102969545975} a^{8} - \frac{8825379323894}{300130268676975} a^{6} + \frac{137902481302}{606323775105} a^{4} - \frac{1162480479079}{3705311958975} a^{2} - \frac{149147510877}{411701328775}$, $\frac{1}{72931655288504925} a^{27} + \frac{11245202}{72931655288504925} a^{25} - \frac{5375614}{147336677350515} a^{23} - \frac{21905917478}{72931655288504925} a^{21} - \frac{177909782464}{29780177741325} a^{19} + \frac{138801095824231}{1326030096154635} a^{17} + \frac{3727426917550351}{8103517254278325} a^{15} + \frac{9419489160016598}{72931655288504925} a^{13} - \frac{324905476175567}{1326030096154635} a^{11} + \frac{1637106557278}{3308908637925} a^{9} - \frac{8825379323894}{900390806030925} a^{7} + \frac{137902481302}{1818971325315} a^{5} - \frac{1162480479079}{11115935876925} a^{3} + \frac{262553817898}{1235103986325} a$, $\frac{1}{218794965865514775} a^{28} - \frac{1}{218794965865514775} a^{26} + \frac{1467461}{24310551762834975} a^{24} + \frac{12631037887}{218794965865514775} a^{22} + \frac{100321909748}{218794965865514775} a^{20} + \frac{8686717370884558}{218794965865514775} a^{18} + \frac{11025890755063441}{24310551762834975} a^{16} - \frac{88177302643222279}{218794965865514775} a^{14} - \frac{61460414230697639}{218794965865514775} a^{12} + \frac{8696456262320092}{24310551762834975} a^{10} - \frac{92463867179602}{300130268676975} a^{8} - \frac{2715931551761}{11115935876925} a^{6} + \frac{9150573089}{3705311958975} a^{4} - \frac{1639186410409}{3705311958975} a^{2} - \frac{128501189081}{411701328775}$, $\frac{1}{656384897596544325} a^{29} - \frac{1}{656384897596544325} a^{27} + \frac{1467461}{72931655288504925} a^{25} + \frac{12631037887}{656384897596544325} a^{23} + \frac{100321909748}{656384897596544325} a^{21} + \frac{8686717370884558}{656384897596544325} a^{19} + \frac{11025890755063441}{72931655288504925} a^{17} - \frac{88177302643222279}{656384897596544325} a^{15} - \frac{280255380096212414}{656384897596544325} a^{13} - \frac{15614095500514883}{72931655288504925} a^{11} + \frac{207666401497373}{900390806030925} a^{9} - \frac{13831867428686}{33347807630775} a^{7} - \frac{3696161385886}{11115935876925} a^{5} - \frac{5344498369384}{11115935876925} a^{3} - \frac{128501189081}{1235103986325} a$, $\frac{1}{1969154692789632975} a^{30} - \frac{1}{1969154692789632975} a^{28} + \frac{2}{218794965865514775} a^{26} + \frac{8083352}{393830938557926595} a^{24} + \frac{276503910578}{1969154692789632975} a^{22} + \frac{2933185586626}{1969154692789632975} a^{20} - \frac{1874126957307061}{43758993173102955} a^{18} + \frac{622187989537459166}{1969154692789632975} a^{16} + \frac{175399518913886332}{1969154692789632975} a^{14} - \frac{599396405999251}{43758993173102955} a^{12} + \frac{8970170763803492}{24310551762834975} a^{10} + \frac{961154789649481}{2701172418092775} a^{8} - \frac{167292215543}{444637435077} a^{6} + \frac{14132739728681}{33347807630775} a^{4} - \frac{1142894396527}{3705311958975} a^{2} - \frac{63571117733}{411701328775}$, $\frac{1}{5907464078368898925} a^{31} - \frac{1}{5907464078368898925} a^{29} + \frac{2}{656384897596544325} a^{27} + \frac{8083352}{1181492815673779785} a^{25} + \frac{276503910578}{5907464078368898925} a^{23} + \frac{2933185586626}{5907464078368898925} a^{21} - \frac{1874126957307061}{131276979519308865} a^{19} + \frac{622187989537459166}{5907464078368898925} a^{17} + \frac{175399518913886332}{5907464078368898925} a^{15} - \frac{44358389579102206}{131276979519308865} a^{13} + \frac{8970170763803492}{72931655288504925} a^{11} - \frac{1740017628443294}{8103517254278325} a^{9} - \frac{167292215543}{1333912305231} a^{7} + \frac{14132739728681}{100043422892325} a^{5} - \frac{4848206355502}{11115935876925} a^{3} - \frac{63571117733}{1235103986325} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{74573424008}{1969154692789632975} a^{30} - \frac{9321678001}{35802812596175145} a^{28} + \frac{8}{411701328775} a^{26} + \frac{9321678001}{804064799015775} a^{24} + \frac{2759216688296}{35802812596175145} a^{22} + \frac{967068162535744}{1969154692789632975} a^{20} - \frac{74573424008}{2701172418092775} a^{18} - \frac{809932636472887}{35802812596175145} a^{16} - \frac{120883520316968}{804064799015775} a^{14} - \frac{9321678001}{33347807630775} a^{12} + \frac{120883520316968}{442010032051545} a^{10} + \frac{1008596238030199}{2701172418092775} a^{8} + \frac{3430377504368}{33347807630775} a^{6} - \frac{3430377504368}{3705311958975} a^{2} - \frac{9321678001}{7485478705} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |