Properties

Label 32.0.15729269092...000.18
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}$
Root discriminant $61.29$
Ramified primes $2, 3, 5, 7$
Class number $2048$ (GRH)
Class group $[2, 4, 4, 8, 8]$ (GRH)
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3489481, -15682728, 53725576, -136583632, 280011493, -455539424, 586114096, -567444664, 351155703, 4847964, -347796254, 526514548, -481999064, 274978956, -27458046, -155507284, 233244785, -223250556, 168599986, -107169676, 59055416, -28669532, 12374350, -4772316, 1645758, -506220, 137922, -32900, 6758, -1160, 160, -16, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 16*x^31 + 160*x^30 - 1160*x^29 + 6758*x^28 - 32900*x^27 + 137922*x^26 - 506220*x^25 + 1645758*x^24 - 4772316*x^23 + 12374350*x^22 - 28669532*x^21 + 59055416*x^20 - 107169676*x^19 + 168599986*x^18 - 223250556*x^17 + 233244785*x^16 - 155507284*x^15 - 27458046*x^14 + 274978956*x^13 - 481999064*x^12 + 526514548*x^11 - 347796254*x^10 + 4847964*x^9 + 351155703*x^8 - 567444664*x^7 + 586114096*x^6 - 455539424*x^5 + 280011493*x^4 - 136583632*x^3 + 53725576*x^2 - 15682728*x + 3489481)
 
gp: K = bnfinit(x^32 - 16*x^31 + 160*x^30 - 1160*x^29 + 6758*x^28 - 32900*x^27 + 137922*x^26 - 506220*x^25 + 1645758*x^24 - 4772316*x^23 + 12374350*x^22 - 28669532*x^21 + 59055416*x^20 - 107169676*x^19 + 168599986*x^18 - 223250556*x^17 + 233244785*x^16 - 155507284*x^15 - 27458046*x^14 + 274978956*x^13 - 481999064*x^12 + 526514548*x^11 - 347796254*x^10 + 4847964*x^9 + 351155703*x^8 - 567444664*x^7 + 586114096*x^6 - 455539424*x^5 + 280011493*x^4 - 136583632*x^3 + 53725576*x^2 - 15682728*x + 3489481, 1)
 

Normalized defining polynomial

\( x^{32} - 16 x^{31} + 160 x^{30} - 1160 x^{29} + 6758 x^{28} - 32900 x^{27} + 137922 x^{26} - 506220 x^{25} + 1645758 x^{24} - 4772316 x^{23} + 12374350 x^{22} - 28669532 x^{21} + 59055416 x^{20} - 107169676 x^{19} + 168599986 x^{18} - 223250556 x^{17} + 233244785 x^{16} - 155507284 x^{15} - 27458046 x^{14} + 274978956 x^{13} - 481999064 x^{12} + 526514548 x^{11} - 347796254 x^{10} + 4847964 x^{9} + 351155703 x^{8} - 567444664 x^{7} + 586114096 x^{6} - 455539424 x^{5} + 280011493 x^{4} - 136583632 x^{3} + 53725576 x^{2} - 15682728 x + 3489481 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $61.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(517,·)$, $\chi_{840}(769,·)$, $\chi_{840}(13,·)$, $\chi_{840}(659,·)$, $\chi_{840}(407,·)$, $\chi_{840}(671,·)$, $\chi_{840}(673,·)$, $\chi_{840}(419,·)$, $\chi_{840}(421,·)$, $\chi_{840}(167,·)$, $\chi_{840}(169,·)$, $\chi_{840}(71,·)$, $\chi_{840}(433,·)$, $\chi_{840}(181,·)$, $\chi_{840}(827,·)$, $\chi_{840}(323,·)$, $\chi_{840}(839,·)$, $\chi_{840}(587,·)$, $\chi_{840}(589,·)$, $\chi_{840}(337,·)$, $\chi_{840}(83,·)$, $\chi_{840}(601,·)$, $\chi_{840}(349,·)$, $\chi_{840}(97,·)$, $\chi_{840}(743,·)$, $\chi_{840}(491,·)$, $\chi_{840}(239,·)$, $\chi_{840}(757,·)$, $\chi_{840}(503,·)$, $\chi_{840}(251,·)$, $\chi_{840}(253,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{19} a^{18} - \frac{9}{19} a^{17} - \frac{2}{19} a^{16} - \frac{8}{19} a^{15} + \frac{2}{19} a^{14} + \frac{1}{19} a^{13} + \frac{8}{19} a^{12} + \frac{4}{19} a^{11} - \frac{7}{19} a^{10} - \frac{9}{19} a^{8} + \frac{4}{19} a^{7} + \frac{3}{19} a^{6} + \frac{2}{19} a^{5} + \frac{9}{19} a^{4} + \frac{2}{19} a^{3} + \frac{2}{19} a^{2} - \frac{3}{19} a - \frac{1}{19}$, $\frac{1}{19} a^{19} - \frac{7}{19} a^{17} - \frac{7}{19} a^{16} + \frac{6}{19} a^{15} - \frac{2}{19} a^{13} - \frac{9}{19} a^{11} - \frac{6}{19} a^{10} - \frac{9}{19} a^{9} - \frac{1}{19} a^{8} + \frac{1}{19} a^{7} - \frac{9}{19} a^{6} + \frac{8}{19} a^{5} + \frac{7}{19} a^{4} + \frac{1}{19} a^{3} - \frac{4}{19} a^{2} - \frac{9}{19} a - \frac{9}{19}$, $\frac{1}{209} a^{20} + \frac{1}{209} a^{19} - \frac{1}{209} a^{18} + \frac{8}{209} a^{17} - \frac{89}{209} a^{16} - \frac{61}{209} a^{15} + \frac{29}{209} a^{14} - \frac{91}{209} a^{13} - \frac{94}{209} a^{12} + \frac{6}{19} a^{11} - \frac{1}{11} a^{10} - \frac{10}{209} a^{9} - \frac{16}{209} a^{8} + \frac{92}{209} a^{7} + \frac{36}{209} a^{6} - \frac{49}{209} a^{5} - \frac{3}{19} a^{4} - \frac{67}{209} a^{3} - \frac{1}{209} a^{2} + \frac{78}{209} a + \frac{4}{209}$, $\frac{1}{209} a^{21} - \frac{2}{209} a^{19} - \frac{2}{209} a^{18} + \frac{2}{209} a^{17} + \frac{50}{209} a^{16} - \frac{31}{209} a^{15} + \frac{67}{209} a^{14} - \frac{14}{209} a^{13} + \frac{72}{209} a^{12} + \frac{80}{209} a^{11} + \frac{86}{209} a^{10} - \frac{6}{209} a^{9} - \frac{2}{209} a^{8} - \frac{100}{209} a^{7} + \frac{91}{209} a^{6} - \frac{6}{209} a^{5} + \frac{4}{11} a^{4} + \frac{4}{19} a^{3} + \frac{3}{11} a^{2} - \frac{41}{209} a + \frac{7}{209}$, $\frac{1}{209} a^{22} + \frac{6}{19} a^{17} - \frac{5}{19} a^{15} + \frac{4}{19} a^{14} + \frac{9}{19} a^{13} + \frac{101}{209} a^{12} + \frac{9}{209} a^{11} - \frac{4}{19} a^{10} - \frac{2}{19} a^{9} + \frac{7}{19} a^{8} + \frac{6}{19} a^{7} + \frac{6}{19} a^{6} - \frac{2}{19} a^{5} - \frac{2}{19} a^{4} - \frac{7}{19} a^{3} - \frac{43}{209} a^{2} - \frac{46}{209} a + \frac{8}{209}$, $\frac{1}{209} a^{23} - \frac{3}{19} a^{17} + \frac{7}{19} a^{16} - \frac{5}{19} a^{15} - \frac{3}{19} a^{14} + \frac{35}{209} a^{13} - \frac{101}{209} a^{12} - \frac{9}{19} a^{11} + \frac{2}{19} a^{10} + \frac{7}{19} a^{9} + \frac{3}{19} a^{8} + \frac{1}{19} a^{7} - \frac{1}{19} a^{6} + \frac{5}{19} a^{5} - \frac{4}{19} a^{4} + \frac{34}{209} a^{3} + \frac{31}{209} a^{2} - \frac{3}{209} a + \frac{6}{19}$, $\frac{1}{209} a^{24} - \frac{1}{19} a^{17} + \frac{8}{19} a^{16} - \frac{8}{19} a^{15} + \frac{101}{209} a^{14} - \frac{68}{209} a^{13} - \frac{4}{19} a^{12} - \frac{5}{19} a^{11} + \frac{5}{19} a^{10} + \frac{3}{19} a^{9} - \frac{7}{19} a^{8} - \frac{8}{19} a^{7} - \frac{5}{19} a^{6} + \frac{2}{19} a^{5} - \frac{87}{209} a^{4} + \frac{97}{209} a^{3} + \frac{63}{209} a^{2} - \frac{3}{19} a - \frac{3}{19}$, $\frac{1}{209} a^{25} - \frac{1}{19} a^{17} + \frac{9}{19} a^{16} + \frac{13}{209} a^{15} - \frac{46}{209} a^{14} - \frac{3}{19} a^{13} + \frac{3}{19} a^{12} + \frac{9}{19} a^{11} - \frac{4}{19} a^{10} - \frac{7}{19} a^{9} + \frac{2}{19} a^{8} - \frac{1}{19} a^{7} + \frac{5}{19} a^{6} - \frac{65}{209} a^{5} - \frac{13}{209} a^{4} + \frac{85}{209} a^{3} - \frac{1}{19} a^{2} - \frac{6}{19} a - \frac{1}{19}$, $\frac{1}{209} a^{26} - \frac{9}{209} a^{16} + \frac{75}{209} a^{15} - \frac{1}{19} a^{14} + \frac{4}{19} a^{13} - \frac{2}{19} a^{12} + \frac{5}{19} a^{10} + \frac{2}{19} a^{9} + \frac{9}{19} a^{8} + \frac{9}{19} a^{7} - \frac{32}{209} a^{6} + \frac{9}{209} a^{5} - \frac{25}{209} a^{4} + \frac{1}{19} a^{3} - \frac{4}{19} a^{2} - \frac{4}{19} a - \frac{1}{19}$, $\frac{1}{27379} a^{27} + \frac{52}{27379} a^{26} + \frac{5}{2489} a^{25} + \frac{1}{2489} a^{24} - \frac{8}{27379} a^{23} - \frac{2}{27379} a^{22} + \frac{35}{27379} a^{21} + \frac{30}{27379} a^{20} + \frac{169}{27379} a^{19} + \frac{109}{27379} a^{18} + \frac{11411}{27379} a^{17} + \frac{467}{1441} a^{16} - \frac{12523}{27379} a^{15} + \frac{516}{1441} a^{14} + \frac{3529}{27379} a^{13} - \frac{8912}{27379} a^{12} - \frac{4599}{27379} a^{11} - \frac{7867}{27379} a^{10} - \frac{994}{27379} a^{9} - \frac{15}{2489} a^{8} - \frac{5777}{27379} a^{7} - \frac{4419}{27379} a^{6} - \frac{4548}{27379} a^{5} + \frac{1404}{27379} a^{4} - \frac{10620}{27379} a^{3} + \frac{12308}{27379} a^{2} + \frac{8523}{27379} a - \frac{13005}{27379}$, $\frac{1}{520201} a^{28} + \frac{5}{520201} a^{27} - \frac{555}{520201} a^{26} - \frac{478}{520201} a^{25} - \frac{656}{520201} a^{24} + \frac{1029}{520201} a^{23} - \frac{1181}{520201} a^{22} - \frac{567}{520201} a^{21} - \frac{89}{47291} a^{20} - \frac{12550}{520201} a^{19} - \frac{91}{3971} a^{18} + \frac{249124}{520201} a^{17} - \frac{228207}{520201} a^{16} - \frac{59104}{520201} a^{15} - \frac{182159}{520201} a^{14} - \frac{20688}{47291} a^{13} + \frac{119646}{520201} a^{12} - \frac{137554}{520201} a^{11} + \frac{162823}{520201} a^{10} + \frac{154366}{520201} a^{9} + \frac{244983}{520201} a^{8} + \frac{74006}{520201} a^{7} - \frac{2353}{27379} a^{6} - \frac{12897}{27379} a^{5} - \frac{148003}{520201} a^{4} - \frac{171455}{520201} a^{3} + \frac{118452}{520201} a^{2} - \frac{190493}{520201} a + \frac{80292}{520201}$, $\frac{1}{520201} a^{29} + \frac{9}{520201} a^{27} + \frac{568}{520201} a^{26} - \frac{717}{520201} a^{25} + \frac{832}{520201} a^{24} - \frac{1082}{520201} a^{23} - \frac{818}{520201} a^{22} + \frac{70}{520201} a^{21} + \frac{59}{520201} a^{20} - \frac{6437}{520201} a^{19} - \frac{10376}{520201} a^{18} - \frac{161345}{520201} a^{17} - \frac{178206}{520201} a^{16} - \frac{161569}{520201} a^{15} + \frac{36163}{520201} a^{14} + \frac{77966}{520201} a^{13} - \frac{20944}{47291} a^{12} + \frac{55823}{520201} a^{11} - \frac{49089}{520201} a^{10} + \frac{244192}{520201} a^{9} - \frac{167868}{520201} a^{8} + \frac{162521}{520201} a^{7} - \frac{9479}{27379} a^{6} + \frac{63581}{520201} a^{5} + \frac{178395}{520201} a^{4} + \frac{176435}{520201} a^{3} + \frac{30105}{520201} a^{2} - \frac{40268}{520201} a - \frac{248434}{520201}$, $\frac{1}{145263049978041847766326996433981085658917169} a^{30} - \frac{15}{145263049978041847766326996433981085658917169} a^{29} - \frac{74457194063153442823311393712976928275}{145263049978041847766326996433981085658917169} a^{28} + \frac{1042400716884148199526359511981676996865}{145263049978041847766326996433981085658917169} a^{27} + \frac{43597590937536167570572160578440647229727}{145263049978041847766326996433981085658917169} a^{26} + \frac{67289392515655705816140677364181212110512}{145263049978041847766326996433981085658917169} a^{25} - \frac{105066755978055158850514434739299488499540}{145263049978041847766326996433981085658917169} a^{24} - \frac{103787101386199580066198744158510239344563}{145263049978041847766326996433981085658917169} a^{23} - \frac{346386823663455170739840384840196603600188}{145263049978041847766326996433981085658917169} a^{22} + \frac{253675481250038507281525168878083215309762}{145263049978041847766326996433981085658917169} a^{21} - \frac{67521506921633817464927713713412517695880}{145263049978041847766326996433981085658917169} a^{20} + \frac{29956499920039564748596220991494362144069}{2462085592848166911293677905660696367100291} a^{19} - \frac{1857861934328446720497879247355859705752734}{145263049978041847766326996433981085658917169} a^{18} - \frac{4753590640440441494843819414480309419343230}{145263049978041847766326996433981085658917169} a^{17} + \frac{1127559499637126601301775546910473508882342}{2381361475049866356825032728425919437031429} a^{16} + \frac{72361019426990014590671311617580113150189718}{145263049978041847766326996433981085658917169} a^{15} - \frac{69118078308352303036384276252673737151489579}{145263049978041847766326996433981085658917169} a^{14} + \frac{49395759609212798058769476583570174993623980}{145263049978041847766326996433981085658917169} a^{13} - \frac{2911534553604478863231664021734578334418551}{145263049978041847766326996433981085658917169} a^{12} - \frac{59543593972974551264538509093510526722545121}{145263049978041847766326996433981085658917169} a^{11} + \frac{2139458984722011442856657254292568266765682}{4685904838001349927946032143031647924481199} a^{10} - \frac{54441331455635891630848033925081755238633574}{145263049978041847766326996433981085658917169} a^{9} - \frac{31930502839011280217546347906511439525304904}{145263049978041847766326996433981085658917169} a^{8} + \frac{31116480513074695167653489511923821907062813}{145263049978041847766326996433981085658917169} a^{7} - \frac{789756619748017608524139867305319092421054}{2462085592848166911293677905660696367100291} a^{6} + \frac{21291772399584584834590522706615189127529441}{145263049978041847766326996433981085658917169} a^{5} - \frac{36085424670244420913836495419081002844769447}{145263049978041847766326996433981085658917169} a^{4} + \frac{34765392175764378432776010492679992241456469}{145263049978041847766326996433981085658917169} a^{3} - \frac{50725074589852071543107492678330792235512823}{145263049978041847766326996433981085658917169} a^{2} - \frac{33454892413184670430924833401288976600966859}{145263049978041847766326996433981085658917169} a - \frac{1388333847096991233813679539165738355752461}{13205731816185622524211545130361916878083379}$, $\frac{1}{79838170161481557992698746837076778470083124171259} a^{31} + \frac{274790}{79838170161481557992698746837076778470083124171259} a^{30} - \frac{72930809478589918726244786999767453330858818}{79838170161481557992698746837076778470083124171259} a^{29} - \frac{37293837725294705169740275619454408024587937}{79838170161481557992698746837076778470083124171259} a^{28} + \frac{89443843032634533736748078410457324062843501}{79838170161481557992698746837076778470083124171259} a^{27} + \frac{89752980596576183881689046603023681398704157613}{79838170161481557992698746837076778470083124171259} a^{26} - \frac{1530508720555228780214958347471440370620802366}{2575424843918759935248346672163767047422036263589} a^{25} - \frac{105914175966762365829877134864756311629268314883}{79838170161481557992698746837076778470083124171259} a^{24} + \frac{14500642879016786866856087875177971147305032244}{79838170161481557992698746837076778470083124171259} a^{23} - \frac{89460222414464567106302678735426635404530268330}{79838170161481557992698746837076778470083124171259} a^{22} - \frac{59233802776764393484954478342823192549806582859}{79838170161481557992698746837076778470083124171259} a^{21} + \frac{138119932697926223510564205090567878471284093130}{79838170161481557992698746837076778470083124171259} a^{20} + \frac{28476822498310285386122161859039250540859449907}{2575424843918759935248346672163767047422036263589} a^{19} - \frac{942094425092350341086505677103740079950441724583}{79838170161481557992698746837076778470083124171259} a^{18} + \frac{18717814443009941871317511188416246595348415898}{118983860151239281658269369354808909791480065829} a^{17} + \frac{25659614839133694774960081626866695796033152224139}{79838170161481557992698746837076778470083124171259} a^{16} + \frac{1117286924602325343339489218271753514252327626063}{79838170161481557992698746837076778470083124171259} a^{15} - \frac{1611754921236185182257995449784455083141045221633}{7258015469225596181154431530643343497280284015569} a^{14} - \frac{16673294029011831657427210180111656014125032591829}{79838170161481557992698746837076778470083124171259} a^{13} + \frac{6440651544682267696759660622270069940366882271}{71220490777414413909633137232004262685176738779} a^{12} - \frac{447702980737059564589024040165743288208683451042}{7258015469225596181154431530643343497280284015569} a^{11} + \frac{3504589746185061964058983936008361354625658365860}{7258015469225596181154431530643343497280284015569} a^{10} - \frac{15418431005089108076304820907916101069123241762549}{79838170161481557992698746837076778470083124171259} a^{9} + \frac{6695874779435938505972071003675664646027600529624}{79838170161481557992698746837076778470083124171259} a^{8} - \frac{1206483022416427311669670156085731237156561282449}{2753040350395915792851680925416440636899418074871} a^{7} + \frac{691318471810444376410368562264060490724794674246}{79838170161481557992698746837076778470083124171259} a^{6} - \frac{12156752211271926237300214396469978320510551146278}{79838170161481557992698746837076778470083124171259} a^{5} - \frac{19133466974307667867345714758657511452393258130110}{79838170161481557992698746837076778470083124171259} a^{4} + \frac{10712165186896836180898526103841359418576244607584}{79838170161481557992698746837076778470083124171259} a^{3} - \frac{4706470835337517952068171075593732123139974230898}{79838170161481557992698746837076778470083124171259} a^{2} + \frac{13036579039078467310259462335716575321884265449922}{79838170161481557992698746837076778470083124171259} a + \frac{506325908110003209333529105416741727416455660220}{1308822461663632098240963062902898007706280724119}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{4}\times C_{8}\times C_{8}$, which has order $2048$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{51045378445827683392533945584408}{41057248582780751311615881250770149429} a^{30} + \frac{765680676687415250888009183766120}{41057248582780751311615881250770149429} a^{29} - \frac{7337038312525863030392855714231898}{41057248582780751311615881250770149429} a^{28} + \frac{50907477252846983782078025231072452}{41057248582780751311615881250770149429} a^{27} - \frac{25889194975019913620621483748712214}{3732477143889159210146898295524559039} a^{26} + \frac{120932441260884159147758597348704124}{3732477143889159210146898295524559039} a^{25} - \frac{5350078382037684444692919358528702977}{41057248582780751311615881250770149429} a^{24} + \frac{18809123630546744830020064652339734744}{41057248582780751311615881250770149429} a^{23} - \frac{58440647587246990236244365221668192592}{41057248582780751311615881250770149429} a^{22} + \frac{14673864197584718775439606457243495680}{3732477143889159210146898295524559039} a^{21} - \frac{396482094827478066162403193991138111225}{41057248582780751311615881250770149429} a^{20} + \frac{14633515388448175658615728642095850576}{695885569199673751044336970352036431} a^{19} - \frac{1651475660640441092954203365733734563944}{41057248582780751311615881250770149429} a^{18} + \frac{2732219239078235688694493707955876576008}{41057248582780751311615881250770149429} a^{17} - \frac{3798334222838631149532621258761919088349}{41057248582780751311615881250770149429} a^{16} + \frac{4171116232571418154734707943053316027128}{41057248582780751311615881250770149429} a^{15} - \frac{2987747337127269006779557367622182652656}{41057248582780751311615881250770149429} a^{14} - \frac{231110301256778545340581269776767037624}{41057248582780751311615881250770149429} a^{13} + \frac{4822757380637689335962833033866805217125}{41057248582780751311615881250770149429} a^{12} - \frac{8799603699553570478820129387433318035856}{41057248582780751311615881250770149429} a^{11} + \frac{9661999740545829848529337282199482454108}{41057248582780751311615881250770149429} a^{10} - \frac{6205456046840281857857520204444559217136}{41057248582780751311615881250770149429} a^{9} - \frac{367622845690366001719220249544463731268}{41057248582780751311615881250770149429} a^{8} + \frac{6847259030980630554812654972881448561052}{41057248582780751311615881250770149429} a^{7} - \frac{175571958793852250966669632561806558206}{695885569199673751044336970352036431} a^{6} + \frac{10009829979081587943972560325203010543852}{41057248582780751311615881250770149429} a^{5} - \frac{7180340217201566408084853847879185126412}{41057248582780751311615881250770149429} a^{4} + \frac{3893424931290530922096883445506147433984}{41057248582780751311615881250770149429} a^{3} - \frac{1646970160266347535360519955919869773220}{41057248582780751311615881250770149429} a^{2} + \frac{504383548357571090895283581707806049672}{41057248582780751311615881250770149429} a - \frac{101471351168309959716475380373666052350}{41057248582780751311615881250770149429} \) (order $10$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 9540601320446.762 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{2}, \sqrt{-35})\), \(\Q(\sqrt{3}, \sqrt{-35})\), \(\Q(\sqrt{6}, \sqrt{-35})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{2}, \sqrt{-105})\), \(\Q(\sqrt{3}, \sqrt{-70})\), \(\Q(\sqrt{6}, \sqrt{-70})\), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\sqrt{10}, \sqrt{-14})\), \(\Q(\sqrt{15}, \sqrt{-21})\), \(\Q(\sqrt{30}, \sqrt{-35})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-7})\), \(\Q(\sqrt{2}, \sqrt{15})\), \(\Q(\sqrt{2}, \sqrt{-21})\), \(\Q(\sqrt{5}, \sqrt{-14})\), \(\Q(\sqrt{-7}, \sqrt{10})\), \(\Q(\sqrt{15}, \sqrt{-42})\), \(\Q(\sqrt{-21}, \sqrt{30})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{-7})\), \(\Q(\sqrt{3}, \sqrt{10})\), \(\Q(\sqrt{3}, \sqrt{-14})\), \(\Q(\sqrt{5}, \sqrt{-21})\), \(\Q(\sqrt{-7}, \sqrt{15})\), \(\Q(\sqrt{10}, \sqrt{-42})\), \(\Q(\sqrt{-14}, \sqrt{30})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{-7})\), \(\Q(\sqrt{6}, \sqrt{10})\), \(\Q(\sqrt{6}, \sqrt{-14})\), \(\Q(\sqrt{5}, \sqrt{-42})\), \(\Q(\sqrt{-7}, \sqrt{30})\), \(\Q(\sqrt{10}, \sqrt{-21})\), \(\Q(\sqrt{-14}, \sqrt{15})\), 4.0.72000.2, 4.4.3528000.1, 4.0.18000.1, 4.4.882000.1, 4.0.8000.2, 4.4.392000.1, \(\Q(\zeta_{5})\), 4.4.6125.1, 8.0.7965941760000.58, 8.0.6146560000.2, 8.0.7965941760000.16, 8.0.31116960000.6, 8.0.7965941760000.7, 8.0.497871360000.15, 8.0.7965941760000.52, 8.8.3317760000.1, 8.0.12745506816.6, 8.0.7965941760000.62, 8.0.7965941760000.47, 8.0.7965941760000.53, 8.0.7965941760000.43, 8.0.7965941760000.27, 8.0.7965941760000.14, 8.0.12446784000000.10, 8.0.777924000000.4, 8.0.153664000000.2, 8.0.37515625.1, 8.0.82944000000.6, 8.8.199148544000000.8, 8.0.64000000.2, 8.8.153664000000.1, 8.0.199148544000000.16, 8.0.199148544000000.17, 8.0.153664000000.1, 8.0.153664000000.5, 8.0.82944000000.1, 8.8.199148544000000.5, 8.0.324000000.3, 8.8.777924000000.1, 8.0.199148544000000.118, 8.0.199148544000000.138, 8.0.777924000000.2, 8.0.777924000000.10, 8.0.5184000000.6, 8.8.12446784000000.1, 8.0.82944000000.4, 8.8.199148544000000.10, 8.0.12446784000000.2, 8.0.12446784000000.19, 8.0.199148544000000.219, 8.0.199148544000000.59, 16.0.63456228123711897600000000.18, 16.0.39660142577319936000000000000.69, 16.0.23612624896000000000000.2, 16.0.39660142577319936000000000000.67, 16.0.605165749776000000000000.8, 16.0.154922431942656000000000000.10, 16.0.39660142577319936000000000000.65, 16.0.6879707136000000000000.4, 16.16.39660142577319936000000000000.3, 16.0.39660142577319936000000000000.39, 16.0.39660142577319936000000000000.58, 16.0.39660142577319936000000000000.57, 16.0.39660142577319936000000000000.44, 16.0.39660142577319936000000000000.13, 16.0.39660142577319936000000000000.17

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$7$7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$