Normalized defining polynomial
\( x^{32} + 32 x^{30} + 609 x^{28} + 7696 x^{26} + 72552 x^{24} + 517992 x^{22} + 2894263 x^{20} + 12535456 x^{18} + 42422151 x^{16} + 108450824 x^{14} + 207480103 x^{12} + 270080808 x^{10} + 234944832 x^{8} + 85434344 x^{6} + 22080969 x^{4} + 1937848 x^{2} + 130321 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(840=2^{3}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(43,·)$, $\chi_{840}(517,·)$, $\chi_{840}(391,·)$, $\chi_{840}(139,·)$, $\chi_{840}(13,·)$, $\chi_{840}(407,·)$, $\chi_{840}(281,·)$, $\chi_{840}(559,·)$, $\chi_{840}(797,·)$, $\chi_{840}(671,·)$, $\chi_{840}(419,·)$, $\chi_{840}(293,·)$, $\chi_{840}(169,·)$, $\chi_{840}(811,·)$, $\chi_{840}(29,·)$, $\chi_{840}(433,·)$, $\chi_{840}(827,·)$, $\chi_{840}(701,·)$, $\chi_{840}(449,·)$, $\chi_{840}(323,·)$, $\chi_{840}(839,·)$, $\chi_{840}(713,·)$, $\chi_{840}(589,·)$, $\chi_{840}(463,·)$, $\chi_{840}(547,·)$, $\chi_{840}(421,·)$, $\chi_{840}(97,·)$, $\chi_{840}(743,·)$, $\chi_{840}(377,·)$, $\chi_{840}(251,·)$, $\chi_{840}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} + \frac{1}{3} a^{14} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{57} a^{17} - \frac{5}{57} a^{15} + \frac{25}{57} a^{13} - \frac{11}{57} a^{11} - \frac{7}{19} a^{9} - \frac{28}{57} a^{7} + \frac{7}{57} a^{5} - \frac{16}{57} a^{3} + \frac{4}{57} a$, $\frac{1}{627} a^{18} - \frac{43}{627} a^{16} - \frac{298}{627} a^{14} - \frac{49}{627} a^{12} - \frac{2}{627} a^{10} + \frac{29}{627} a^{8} + \frac{15}{209} a^{6} + \frac{39}{209} a^{4} - \frac{62}{209} a^{2} - \frac{2}{33}$, $\frac{1}{627} a^{19} + \frac{1}{627} a^{17} + \frac{109}{627} a^{15} - \frac{203}{627} a^{13} + \frac{47}{209} a^{11} - \frac{268}{627} a^{9} + \frac{67}{627} a^{7} - \frac{202}{627} a^{5} - \frac{263}{627} a^{3} + \frac{46}{209} a$, $\frac{1}{627} a^{20} - \frac{1}{11} a^{16} - \frac{2}{11} a^{14} - \frac{1}{33} a^{12} + \frac{8}{33} a^{10} + \frac{2}{33} a^{8} - \frac{2}{33} a^{6} + \frac{2}{33} a^{4} - \frac{94}{627} a^{2} - \frac{3}{11}$, $\frac{1}{627} a^{21} - \frac{2}{627} a^{17} + \frac{238}{627} a^{15} + \frac{34}{209} a^{13} + \frac{58}{209} a^{11} + \frac{137}{627} a^{9} + \frac{101}{209} a^{7} - \frac{68}{209} a^{5} + \frac{280}{627} a^{3} + \frac{49}{627} a$, $\frac{1}{627} a^{22} - \frac{1}{11} a^{16} - \frac{4}{33} a^{14} - \frac{7}{33} a^{12} - \frac{4}{33} a^{10} - \frac{14}{33} a^{8} + \frac{5}{33} a^{6} + \frac{305}{627} a^{4} - \frac{2}{11} a^{2} - \frac{5}{11}$, $\frac{1}{627} a^{23} - \frac{2}{627} a^{17} + \frac{92}{209} a^{15} - \frac{4}{209} a^{13} - \frac{18}{209} a^{11} - \frac{167}{627} a^{9} - \frac{191}{627} a^{7} + \frac{21}{209} a^{5} + \frac{260}{627} a^{3} - \frac{65}{627} a$, $\frac{1}{9405} a^{24} - \frac{7}{9405} a^{18} - \frac{23}{627} a^{16} + \frac{1}{627} a^{14} + \frac{203}{3135} a^{12} - \frac{36}{209} a^{10} - \frac{106}{627} a^{8} + \frac{47}{9405} a^{6} + \frac{257}{627} a^{4} - \frac{221}{627} a^{2} - \frac{1}{495}$, $\frac{1}{9405} a^{25} - \frac{7}{9405} a^{19} - \frac{1}{627} a^{17} - \frac{109}{627} a^{15} - \frac{182}{3135} a^{13} + \frac{277}{627} a^{11} + \frac{59}{627} a^{9} + \frac{212}{9405} a^{7} - \frac{72}{209} a^{5} + \frac{18}{209} a^{3} + \frac{1301}{9405} a$, $\frac{1}{9405} a^{26} - \frac{7}{9405} a^{20} + \frac{1}{11} a^{16} - \frac{1}{5} a^{14} - \frac{10}{33} a^{12} + \frac{14}{33} a^{10} + \frac{647}{9405} a^{8} + \frac{13}{33} a^{6} - \frac{13}{33} a^{4} - \frac{4624}{9405} a^{2} + \frac{3}{11}$, $\frac{1}{9405} a^{27} - \frac{7}{9405} a^{21} + \frac{2}{627} a^{17} + \frac{68}{285} a^{15} - \frac{311}{627} a^{13} + \frac{244}{627} a^{11} - \frac{838}{9405} a^{9} - \frac{94}{627} a^{7} - \frac{5}{627} a^{5} - \frac{829}{9405} a^{3} - \frac{49}{627} a$, $\frac{1}{24838605} a^{28} - \frac{1022}{24838605} a^{26} - \frac{1099}{24838605} a^{24} - \frac{10837}{24838605} a^{22} - \frac{16666}{24838605} a^{20} + \frac{4753}{24838605} a^{18} - \frac{658697}{8279535} a^{16} - \frac{708337}{2759845} a^{14} + \frac{809181}{2759845} a^{12} + \frac{3145787}{24838605} a^{10} - \frac{9346294}{24838605} a^{8} + \frac{8359777}{24838605} a^{6} - \frac{6477079}{24838605} a^{4} + \frac{6152513}{24838605} a^{2} - \frac{4079}{68805}$, $\frac{1}{24838605} a^{29} - \frac{1022}{24838605} a^{27} - \frac{1099}{24838605} a^{25} - \frac{10837}{24838605} a^{23} - \frac{16666}{24838605} a^{21} + \frac{4753}{24838605} a^{19} + \frac{22526}{2759845} a^{17} + \frac{2523149}{8279535} a^{15} + \frac{4025348}{8279535} a^{13} + \frac{4017317}{24838605} a^{11} - \frac{5424409}{24838605} a^{9} - \frac{2970113}{24838605} a^{7} + \frac{8774696}{24838605} a^{5} - \frac{3870082}{24838605} a^{3} + \frac{381199}{1307295} a$, $\frac{1}{58045155948090697236600441004762788405} a^{30} - \frac{465978145810547606899956554212}{58045155948090697236600441004762788405} a^{28} + \frac{1235735413185950137061375309039554}{58045155948090697236600441004762788405} a^{26} - \frac{814528956039492009068060727473794}{58045155948090697236600441004762788405} a^{24} + \frac{42257313990560724916605745200040384}{58045155948090697236600441004762788405} a^{22} - \frac{2886564273857092627260361528217}{30247606017764823989890797813841995} a^{20} + \frac{608073400383013758845433045360686}{1758944119639112037472740636507963285} a^{18} - \frac{1340560402177557065203583846758261541}{19348385316030232412200147001587596135} a^{16} + \frac{3308228343845191212265896996031190432}{19348385316030232412200147001587596135} a^{14} - \frac{695833666809250632247569350841731584}{3055008207794247222978970579198041495} a^{12} - \frac{14775467703690271008949331027889297284}{58045155948090697236600441004762788405} a^{10} - \frac{3688640663727967518454416111642032377}{58045155948090697236600441004762788405} a^{8} + \frac{19301065906425441389112782666103954227}{58045155948090697236600441004762788405} a^{6} - \frac{24718048630369122992985968186006455247}{58045155948090697236600441004762788405} a^{4} - \frac{19343917250348242890163002343784587006}{58045155948090697236600441004762788405} a^{2} + \frac{5010828045945115270382587680541366}{53596635224460477596122290863123535}$, $\frac{1}{1102857963013723247495408379090492979695} a^{31} - \frac{3832224029386080053483573843260}{220571592602744649499081675818098595939} a^{29} - \frac{8275033398573294807884815425204904}{220571592602744649499081675818098595939} a^{27} - \frac{1922107823947435788053303357474432}{122539773668191471943934264343388108855} a^{25} + \frac{104516917349416535875708956201963817}{220571592602744649499081675818098595939} a^{23} - \frac{738330283354523457153274162929085}{2183877154482620292070115602159392039} a^{21} - \frac{365034807868428390912109192429448074}{1102857963013723247495408379090492979695} a^{19} + \frac{139105129602782064330971889914514957}{24507954733638294388786852868677621771} a^{17} - \frac{35273904836123627479576068353934010430}{73523864200914883166360558606032865313} a^{15} - \frac{332911813049875734815679543751049959387}{1102857963013723247495408379090492979695} a^{13} - \frac{8477657650389409825555834636819133297}{220571592602744649499081675818098595939} a^{11} + \frac{34776130075384312541764557363327619591}{220571592602744649499081675818098595939} a^{9} + \frac{24484917976600207914323918737002949414}{1102857963013723247495408379090492979695} a^{7} - \frac{49305932859245560155848477787770287571}{220571592602744649499081675818098595939} a^{5} + \frac{89970059124245166630649596725440213702}{220571592602744649499081675818098595939} a^{3} + \frac{1306471861540443507765482087086918289}{3055008207794247222978970579198041495} a$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{8}\times C_{80}$, which has order $20480$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{15107012574914564302643691197032}{19348385316030232412200147001587596135} a^{30} + \frac{481815311086435861477405369444696}{19348385316030232412200147001587596135} a^{28} + \frac{481541612817606980053155489346232}{1018336069264749074326323526399347165} a^{26} + \frac{115302807211170529398960510648941288}{19348385316030232412200147001587596135} a^{24} + \frac{1084020992318958158664164236960627328}{19348385316030232412200147001587596135} a^{22} + \frac{76366910143067603400822044859335429}{191568171445843885269308386154332635} a^{20} + \frac{14310632044142924397977183317589765888}{6449461772010077470733382333862532045} a^{18} + \frac{61669619755094919615249712500237137848}{6449461772010077470733382333862532045} a^{16} + \frac{207435457938027656169528313613486595464}{6449461772010077470733382333862532045} a^{14} + \frac{1576890618359013076359494066301889643432}{19348385316030232412200147001587596135} a^{12} + \frac{2982230578442115310185649261785738653912}{19348385316030232412200147001587596135} a^{10} + \frac{3801116617328109923329564582742684469016}{19348385316030232412200147001587596135} a^{8} + \frac{3215044086314397694410512440186737938816}{19348385316030232412200147001587596135} a^{6} + \frac{1032348023452177488069346023641041614896}{19348385316030232412200147001587596135} a^{4} + \frac{297325040681838093515801064315092086888}{19348385316030232412200147001587596135} a^{2} + \frac{24064389793976576509051910574829389}{17865545074820159198707430287707845} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 371817446614.9413 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |