Normalized defining polynomial
\( x^{32} + 48 x^{30} + 1129 x^{28} + 16884 x^{26} + 177562 x^{24} + 1378608 x^{22} + 8103128 x^{20} + 36449184 x^{18} + 125568321 x^{16} + 328468416 x^{14} + 640424848 x^{12} + 900463872 x^{10} + 864389632 x^{8} + 511819776 x^{6} + 152797184 x^{4} + 4718592 x^{2} + 65536 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(840=2^{3}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(643,·)$, $\chi_{840}(769,·)$, $\chi_{840}(659,·)$, $\chi_{840}(533,·)$, $\chi_{840}(797,·)$, $\chi_{840}(671,·)$, $\chi_{840}(419,·)$, $\chi_{840}(293,·)$, $\chi_{840}(169,·)$, $\chi_{840}(43,·)$, $\chi_{840}(307,·)$, $\chi_{840}(181,·)$, $\chi_{840}(197,·)$, $\chi_{840}(71,·)$, $\chi_{840}(713,·)$, $\chi_{840}(589,·)$, $\chi_{840}(463,·)$, $\chi_{840}(547,·)$, $\chi_{840}(727,·)$, $\chi_{840}(601,·)$, $\chi_{840}(349,·)$, $\chi_{840}(223,·)$, $\chi_{840}(421,·)$, $\chi_{840}(491,·)$, $\chi_{840}(239,·)$, $\chi_{840}(113,·)$, $\chi_{840}(839,·)$, $\chi_{840}(617,·)$, $\chi_{840}(377,·)$, $\chi_{840}(251,·)$, $\chi_{840}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a$, $\frac{1}{4} a^{18} + \frac{1}{4} a^{14} - \frac{1}{2} a^{10} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{19} + \frac{1}{8} a^{15} - \frac{1}{2} a^{13} + \frac{1}{4} a^{11} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{20} - \frac{7}{16} a^{16} + \frac{1}{4} a^{14} - \frac{3}{8} a^{12} - \frac{1}{2} a^{8} + \frac{1}{16} a^{4}$, $\frac{1}{32} a^{21} - \frac{7}{32} a^{17} + \frac{1}{8} a^{15} + \frac{5}{16} a^{13} - \frac{1}{2} a^{11} - \frac{1}{4} a^{9} + \frac{1}{32} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{64} a^{22} - \frac{7}{64} a^{18} + \frac{1}{16} a^{16} - \frac{11}{32} a^{14} + \frac{1}{4} a^{12} - \frac{1}{8} a^{10} - \frac{1}{2} a^{8} + \frac{1}{64} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{128} a^{23} - \frac{7}{128} a^{19} + \frac{1}{32} a^{17} - \frac{11}{64} a^{15} - \frac{3}{8} a^{13} - \frac{1}{16} a^{11} + \frac{1}{4} a^{9} - \frac{63}{128} a^{7} + \frac{1}{8} a^{5} + \frac{1}{4} a^{3} - \frac{1}{2} a$, $\frac{1}{1280} a^{24} + \frac{5}{256} a^{20} + \frac{33}{320} a^{18} + \frac{1}{128} a^{16} + \frac{1}{16} a^{14} + \frac{23}{160} a^{12} + \frac{1}{8} a^{10} - \frac{115}{256} a^{8} - \frac{7}{80} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2} + \frac{1}{5}$, $\frac{1}{2560} a^{25} + \frac{5}{512} a^{21} + \frac{33}{640} a^{19} + \frac{1}{256} a^{17} - \frac{15}{32} a^{15} + \frac{23}{320} a^{13} + \frac{1}{16} a^{11} - \frac{115}{512} a^{9} - \frac{7}{160} a^{7} - \frac{3}{8} a^{5} + \frac{1}{8} a^{3} + \frac{1}{10} a$, $\frac{1}{5120} a^{26} + \frac{5}{1024} a^{22} + \frac{33}{1280} a^{20} + \frac{1}{512} a^{18} - \frac{15}{64} a^{16} - \frac{297}{640} a^{14} + \frac{1}{32} a^{12} + \frac{397}{1024} a^{10} - \frac{7}{320} a^{8} - \frac{3}{16} a^{6} - \frac{7}{16} a^{4} + \frac{1}{20} a^{2}$, $\frac{1}{10240} a^{27} + \frac{5}{2048} a^{23} + \frac{33}{2560} a^{21} + \frac{1}{1024} a^{19} - \frac{15}{128} a^{17} - \frac{297}{1280} a^{15} + \frac{1}{64} a^{13} + \frac{397}{2048} a^{11} - \frac{7}{640} a^{9} + \frac{13}{32} a^{7} - \frac{7}{32} a^{5} - \frac{19}{40} a^{3}$, $\frac{1}{20480} a^{28} - \frac{7}{20480} a^{24} + \frac{33}{5120} a^{22} + \frac{49}{2048} a^{20} - \frac{19}{1280} a^{18} - \frac{177}{2560} a^{16} - \frac{15}{128} a^{14} + \frac{8897}{20480} a^{12} + \frac{313}{1280} a^{10} - \frac{51}{128} a^{8} + \frac{21}{320} a^{6} + \frac{13}{40} a^{4} + \frac{1}{4} a^{2} - \frac{2}{5}$, $\frac{1}{40960} a^{29} - \frac{7}{40960} a^{25} + \frac{33}{10240} a^{23} + \frac{49}{4096} a^{21} - \frac{19}{2560} a^{19} - \frac{177}{5120} a^{17} - \frac{15}{256} a^{15} + \frac{8897}{40960} a^{13} - \frac{967}{2560} a^{11} + \frac{77}{256} a^{9} - \frac{299}{640} a^{7} + \frac{13}{80} a^{5} - \frac{3}{8} a^{3} - \frac{1}{5} a$, $\frac{1}{51629161330411704783754865803575496491745280} a^{30} + \frac{627117687529028444843746790386904481}{42458191883562257223482619904256164878080} a^{28} - \frac{3153091469627575403701437981778571639847}{51629161330411704783754865803575496491745280} a^{26} + \frac{2166227080344787258165672024571088033729}{12907290332602926195938716450893874122936320} a^{24} - \frac{120214365348982044765120907814959251233179}{25814580665205852391877432901787748245872640} a^{22} + \frac{41632760586575724874922380460014787039}{8988363741366940247868186943519410949120} a^{20} - \frac{222852634021905771929974463012605144409241}{6453645166301463097969358225446937061468160} a^{18} - \frac{650626523630206089574372090222338897397983}{1613411291575365774492339556361734265367040} a^{16} + \frac{2955798781152421533466344890480681456575937}{51629161330411704783754865803575496491745280} a^{14} - \frac{593856554211873077812525322166677724444571}{3226822583150731548984679112723468530734080} a^{12} + \frac{562986341052157397393125423657117044761}{25209551430865090226442805568152097896360} a^{10} + \frac{51837321389155139081960260310686874812179}{201676411446920721811542444545216783170880} a^{8} - \frac{40897896000810098435166664719734393983467}{201676411446920721811542444545216783170880} a^{6} + \frac{5831810938077588913422617803048673116821}{12604775715432545113221402784076048948180} a^{4} + \frac{3348490934871636726147779412271898333473}{12604775715432545113221402784076048948180} a^{2} + \frac{446523071088263881010320866026042129661}{3151193928858136278305350696019012237045}$, $\frac{1}{103258322660823409567509731607150992983490560} a^{31} + \frac{627117687529028444843746790386904481}{84916383767124514446965239808512329756160} a^{29} - \frac{3153091469627575403701437981778571639847}{103258322660823409567509731607150992983490560} a^{27} + \frac{2166227080344787258165672024571088033729}{25814580665205852391877432901787748245872640} a^{25} - \frac{120214365348982044765120907814959251233179}{51629161330411704783754865803575496491745280} a^{23} + \frac{41632760586575724874922380460014787039}{17976727482733880495736373887038821898240} a^{21} - \frac{222852634021905771929974463012605144409241}{12907290332602926195938716450893874122936320} a^{19} - \frac{650626523630206089574372090222338897397983}{3226822583150731548984679112723468530734080} a^{17} - \frac{48673362549259283250288520913094815035169343}{103258322660823409567509731607150992983490560} a^{15} - \frac{593856554211873077812525322166677724444571}{6453645166301463097969358225446937061468160} a^{13} + \frac{562986341052157397393125423657117044761}{50419102861730180452885611136304195792720} a^{11} + \frac{51837321389155139081960260310686874812179}{403352822893841443623084889090433566341760} a^{9} - \frac{40897896000810098435166664719734393983467}{403352822893841443623084889090433566341760} a^{7} + \frac{5831810938077588913422617803048673116821}{25209551430865090226442805568152097896360} a^{5} + \frac{3348490934871636726147779412271898333473}{25209551430865090226442805568152097896360} a^{3} - \frac{1352335428884936198647514914996485053692}{3151193928858136278305350696019012237045} a$
Class group and class number
$C_{2}\times C_{4}\times C_{8}\times C_{40}\times C_{80}$, which has order $204800$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 11853022514.42188 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |