Properties

Label 32.0.15729269092...000.11
Degree $32$
Signature $[0, 16]$
Discriminant $2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}$
Root discriminant $61.29$
Ramified primes $2, 3, 5, 7$
Class number $1280$ (GRH)
Class group $[2, 4, 4, 40]$ (GRH)
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![65536, 0, 0, 0, 147456, 0, 0, 0, 4625920, 0, 0, 0, 776784, 0, 0, 0, 1518849, 0, 0, 0, 27204, 0, 0, 0, 4390, 0, 0, 0, 21, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 21*x^28 + 4390*x^24 + 27204*x^20 + 1518849*x^16 + 776784*x^12 + 4625920*x^8 + 147456*x^4 + 65536)
 
gp: K = bnfinit(x^32 + 21*x^28 + 4390*x^24 + 27204*x^20 + 1518849*x^16 + 776784*x^12 + 4625920*x^8 + 147456*x^4 + 65536, 1)
 

Normalized defining polynomial

\( x^{32} + 21 x^{28} + 4390 x^{24} + 27204 x^{20} + 1518849 x^{16} + 776784 x^{12} + 4625920 x^{8} + 147456 x^{4} + 65536 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $61.29$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(643,·)$, $\chi_{840}(517,·)$, $\chi_{840}(391,·)$, $\chi_{840}(13,·)$, $\chi_{840}(659,·)$, $\chi_{840}(407,·)$, $\chi_{840}(29,·)$, $\chi_{840}(799,·)$, $\chi_{840}(419,·)$, $\chi_{840}(167,·)$, $\chi_{840}(169,·)$, $\chi_{840}(43,·)$, $\chi_{840}(559,·)$, $\chi_{840}(307,·)$, $\chi_{840}(769,·)$, $\chi_{840}(701,·)$, $\chi_{840}(629,·)$, $\chi_{840}(713,·)$, $\chi_{840}(631,·)$, $\chi_{840}(461,·)$, $\chi_{840}(547,·)$, $\chi_{840}(601,·)$, $\chi_{840}(743,·)$, $\chi_{840}(617,·)$, $\chi_{840}(491,·)$, $\chi_{840}(113,·)$, $\chi_{840}(757,·)$, $\chi_{840}(503,·)$, $\chi_{840}(377,·)$, $\chi_{840}(251,·)$, $\chi_{840}(253,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{8} + \frac{1}{3}$, $\frac{1}{6} a^{17} - \frac{1}{2} a^{13} + \frac{1}{3} a^{9} + \frac{1}{6} a$, $\frac{1}{12} a^{18} - \frac{1}{4} a^{14} + \frac{1}{6} a^{10} + \frac{1}{12} a^{2}$, $\frac{1}{24} a^{19} - \frac{1}{8} a^{15} - \frac{5}{12} a^{11} - \frac{1}{2} a^{7} + \frac{1}{24} a^{3}$, $\frac{1}{48} a^{20} + \frac{5}{48} a^{16} - \frac{5}{24} a^{12} + \frac{1}{12} a^{8} + \frac{1}{48} a^{4} - \frac{1}{3}$, $\frac{1}{96} a^{21} + \frac{5}{96} a^{17} - \frac{5}{48} a^{13} + \frac{1}{24} a^{9} + \frac{1}{96} a^{5} + \frac{1}{3} a$, $\frac{1}{192} a^{22} + \frac{5}{192} a^{18} + \frac{43}{96} a^{14} - \frac{23}{48} a^{10} + \frac{1}{192} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{384} a^{23} + \frac{5}{384} a^{19} + \frac{43}{192} a^{15} + \frac{25}{96} a^{11} - \frac{191}{384} a^{7} - \frac{1}{6} a^{3}$, $\frac{1}{44833536} a^{24} + \frac{75415}{14944512} a^{20} - \frac{825191}{7472256} a^{16} - \frac{315055}{1245376} a^{12} + \frac{55969}{1358592} a^{8} + \frac{998}{58377} a^{4} + \frac{27691}{175131}$, $\frac{1}{89667072} a^{25} + \frac{75415}{29889024} a^{21} - \frac{825191}{14944512} a^{17} - \frac{315055}{2490752} a^{13} - \frac{1302623}{2717184} a^{9} + \frac{499}{58377} a^{5} - \frac{73720}{175131} a$, $\frac{1}{179334144} a^{26} + \frac{75415}{59778048} a^{22} - \frac{825191}{29889024} a^{18} - \frac{315055}{4981504} a^{14} + \frac{1414561}{5434368} a^{10} + \frac{499}{116754} a^{6} + \frac{101411}{350262} a^{2}$, $\frac{1}{358668288} a^{27} + \frac{75415}{119556096} a^{23} - \frac{825191}{59778048} a^{19} - \frac{315055}{9963008} a^{15} - \frac{4019807}{10868736} a^{11} + \frac{499}{233508} a^{7} - \frac{248851}{700524} a^{3}$, $\frac{1}{6228156500240043257856} a^{28} - \frac{68568441886267}{6228156500240043257856} a^{24} - \frac{7137685493475178343}{1038026083373340542976} a^{20} - \frac{40245180515947037069}{519013041686670271488} a^{16} - \frac{638453471338729955861}{2076052166746681085952} a^{12} - \frac{79983723759694214}{168949557840712979} a^{8} - \frac{23607470955479135}{99707935774847004} a^{4} - \frac{526758900987774898}{1520546020566416811}$, $\frac{1}{12456313000480086515712} a^{29} - \frac{68568441886267}{12456313000480086515712} a^{25} - \frac{7137685493475178343}{2076052166746681085952} a^{21} - \frac{40245180515947037069}{1038026083373340542976} a^{17} + \frac{1437598695407951130091}{4152104333493362171904} a^{13} + \frac{88965834081018765}{337899115681425958} a^{9} - \frac{23607470955479135}{199415871549694008} a^{5} + \frac{993787119578641913}{3041092041132833622} a$, $\frac{1}{24912626000960173031424} a^{30} - \frac{68568441886267}{24912626000960173031424} a^{26} - \frac{7137685493475178343}{4152104333493362171904} a^{22} - \frac{40245180515947037069}{2076052166746681085952} a^{18} - \frac{2714505638085411041813}{8304208666986724343808} a^{14} + \frac{88965834081018765}{675798231362851916} a^{10} - \frac{23607470955479135}{398831743099388016} a^{6} - \frac{2047304921554191709}{6082184082265667244} a^{2}$, $\frac{1}{49825252001920346062848} a^{31} - \frac{68568441886267}{49825252001920346062848} a^{27} - \frac{7137685493475178343}{8304208666986724343808} a^{23} - \frac{40245180515947037069}{4152104333493362171904} a^{19} - \frac{2714505638085411041813}{16608417333973448687616} a^{15} - \frac{586832397281833151}{1351596462725703832} a^{11} - \frac{23607470955479135}{797663486198776032} a^{7} + \frac{4034879160711475535}{12164368164531334488} a^{3}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{4}\times C_{4}\times C_{40}$, which has order $1280$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{6569874683}{1917269941542912} a^{30} - \frac{15391798375}{213029993504768} a^{26} - \frac{4808954884775}{319544990257152} a^{22} - \frac{5032933433855}{53257498376192} a^{18} - \frac{302876741913275}{58099089137664} a^{14} - \frac{248357900466725}{79886247564288} a^{10} - \frac{243894337122145}{14978671418304} a^{6} - \frac{69558908725}{28368695868} a^{2} \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 12132335683441.611 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{210}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{35}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{42}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), \(\Q(i, \sqrt{210})\), \(\Q(i, \sqrt{6})\), \(\Q(i, \sqrt{35})\), \(\Q(\sqrt{-6}, \sqrt{35})\), \(\Q(\sqrt{6}, \sqrt{-35})\), \(\Q(\sqrt{-6}, \sqrt{-35})\), \(\Q(\sqrt{6}, \sqrt{35})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{42})\), \(\Q(i, \sqrt{30})\), \(\Q(i, \sqrt{7})\), \(\Q(\sqrt{5}, \sqrt{-42})\), \(\Q(\sqrt{-5}, \sqrt{42})\), \(\Q(\sqrt{7}, \sqrt{-30})\), \(\Q(\sqrt{-7}, \sqrt{30})\), \(\Q(\sqrt{5}, \sqrt{42})\), \(\Q(\sqrt{-5}, \sqrt{-42})\), \(\Q(\sqrt{-7}, \sqrt{-30})\), \(\Q(\sqrt{7}, \sqrt{30})\), \(\Q(\sqrt{5}, \sqrt{-6})\), \(\Q(\sqrt{-5}, \sqrt{-6})\), \(\Q(\sqrt{-6}, \sqrt{7})\), \(\Q(\sqrt{-6}, \sqrt{-7})\), \(\Q(\sqrt{5}, \sqrt{6})\), \(\Q(\sqrt{-5}, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{-7})\), \(\Q(\sqrt{6}, \sqrt{7})\), \(\Q(\sqrt{5}, \sqrt{7})\), \(\Q(\sqrt{-5}, \sqrt{-7})\), \(\Q(\sqrt{-30}, \sqrt{35})\), \(\Q(\sqrt{30}, \sqrt{35})\), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\sqrt{-5}, \sqrt{7})\), \(\Q(\sqrt{30}, \sqrt{-35})\), \(\Q(\sqrt{-30}, \sqrt{-35})\), 4.0.55125.1, 4.4.882000.1, 4.4.8000.1, 4.0.8000.2, 4.4.392000.1, 4.0.392000.2, 4.0.18000.1, \(\Q(\zeta_{15})^+\), 8.0.7965941760000.54, 8.0.7965941760000.68, 8.0.7965941760000.65, 8.0.3317760000.9, 8.0.12745506816.7, 8.0.384160000.1, 8.0.7965941760000.50, 8.0.7965941760000.59, 8.0.7965941760000.56, 8.0.497871360000.15, 8.0.7965941760000.31, 8.0.497871360000.9, 8.0.7965941760000.36, 8.8.7965941760000.9, 8.0.7965941760000.45, 8.0.777924000000.8, 8.0.1024000000.2, 8.0.2458624000000.7, 8.0.324000000.1, 8.0.12446784000000.12, 8.0.199148544000000.59, 8.0.199148544000000.219, 8.0.12446784000000.13, 8.0.12446784000000.11, 8.8.199148544000000.4, 8.8.12446784000000.6, 8.0.199148544000000.220, 8.0.12446784000000.8, 8.0.199148544000000.193, 8.0.82944000000.3, 8.0.5184000000.1, 8.0.12446784000000.9, 8.8.199148544000000.10, 8.8.5184000000.2, 8.0.82944000000.4, 8.0.777924000000.3, 8.8.777924000000.3, 8.8.2458624000000.1, 8.0.2458624000000.3, 8.0.3038765625.2, 8.0.777924000000.4, 8.0.153664000000.4, 8.0.153664000000.2, 16.0.63456228123711897600000000.13, 16.0.39660142577319936000000000000.35, 16.0.39660142577319936000000000000.45, 16.0.39660142577319936000000000000.20, 16.0.6879707136000000000000.2, 16.0.605165749776000000000000.4, 16.0.6044831973376000000000000.8, 16.0.39660142577319936000000000000.31, 16.0.39660142577319936000000000000.64, 16.0.154922431942656000000000000.17, 16.0.39660142577319936000000000000.65, 16.0.154922431942656000000000000.18, 16.0.39660142577319936000000000000.68, 16.0.39660142577319936000000000000.30, 16.16.39660142577319936000000000000.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.1.0.1}{1} }^{32}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$7$7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$