Normalized defining polynomial
\( x^{32} - 16 x^{31} + 184 x^{30} - 1520 x^{29} + 10334 x^{28} - 58604 x^{27} + 287602 x^{26} - 1233388 x^{25} + 4688282 x^{24} - 15889444 x^{23} + 48314366 x^{22} - 132207604 x^{21} + 326361852 x^{20} - 727469324 x^{19} + 1464404298 x^{18} - 2660057452 x^{17} + 4353318135 x^{16} - 6403659660 x^{15} + 8440471994 x^{14} - 9930099548 x^{13} + 10378954300 x^{12} - 9583863764 x^{11} + 7766700502 x^{10} - 5480415412 x^{9} + 3335315605 x^{8} - 1730268776 x^{7} + 753847668 x^{6} - 270487448 x^{5} + 77802183 x^{4} - 17245236 x^{3} + 2765566 x^{2} - 285676 x + 14281 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1572926909253345615680132503044096000000000000000000000000=2^{64}\cdot 3^{16}\cdot 5^{24}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(840=2^{3}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(517,·)$, $\chi_{840}(769,·)$, $\chi_{840}(139,·)$, $\chi_{840}(13,·)$, $\chi_{840}(29,·)$, $\chi_{840}(671,·)$, $\chi_{840}(169,·)$, $\chi_{840}(811,·)$, $\chi_{840}(827,·)$, $\chi_{840}(701,·)$, $\chi_{840}(629,·)$, $\chi_{840}(323,·)$, $\chi_{840}(71,·)$, $\chi_{840}(713,·)$, $\chi_{840}(587,·)$, $\chi_{840}(461,·)$, $\chi_{840}(463,·)$, $\chi_{840}(211,·)$, $\chi_{840}(727,·)$, $\chi_{840}(601,·)$, $\chi_{840}(223,·)$, $\chi_{840}(617,·)$, $\chi_{840}(239,·)$, $\chi_{840}(113,·)$, $\chi_{840}(839,·)$, $\chi_{840}(83,·)$, $\chi_{840}(757,·)$, $\chi_{840}(377,·)$, $\chi_{840}(379,·)$, $\chi_{840}(253,·)$, $\chi_{840}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{5} a^{24} - \frac{2}{5} a^{23} - \frac{2}{5} a^{22} - \frac{2}{5} a^{21} + \frac{1}{5} a^{20} - \frac{2}{5} a^{19} + \frac{1}{5} a^{18} + \frac{1}{5} a^{17} - \frac{1}{5} a^{16} + \frac{1}{5} a^{15} + \frac{1}{5} a^{14} + \frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{25} - \frac{1}{5} a^{23} - \frac{1}{5} a^{22} + \frac{2}{5} a^{21} + \frac{2}{5} a^{19} - \frac{2}{5} a^{18} + \frac{1}{5} a^{17} - \frac{1}{5} a^{16} - \frac{2}{5} a^{15} + \frac{2}{5} a^{14} + \frac{1}{5} a^{13} - \frac{1}{5} a^{12} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{2} + \frac{2}{5}$, $\frac{1}{55} a^{26} - \frac{2}{55} a^{25} - \frac{1}{11} a^{24} - \frac{16}{55} a^{23} - \frac{13}{55} a^{22} - \frac{1}{5} a^{21} + \frac{13}{55} a^{20} + \frac{2}{55} a^{19} - \frac{9}{55} a^{18} + \frac{13}{55} a^{17} - \frac{1}{5} a^{16} + \frac{17}{55} a^{15} + \frac{13}{55} a^{14} + \frac{27}{55} a^{13} + \frac{8}{55} a^{12} + \frac{4}{55} a^{11} + \frac{5}{11} a^{10} + \frac{17}{55} a^{9} + \frac{2}{11} a^{8} - \frac{2}{11} a^{7} - \frac{3}{11} a^{6} + \frac{27}{55} a^{5} + \frac{9}{55} a^{4} - \frac{23}{55} a^{3} - \frac{9}{55} a^{2} + \frac{4}{55} a - \frac{18}{55}$, $\frac{1}{55} a^{27} + \frac{2}{55} a^{25} - \frac{4}{55} a^{24} + \frac{2}{11} a^{23} + \frac{18}{55} a^{22} + \frac{24}{55} a^{21} - \frac{1}{11} a^{20} - \frac{27}{55} a^{19} - \frac{1}{11} a^{18} - \frac{7}{55} a^{17} + \frac{17}{55} a^{16} - \frac{8}{55} a^{15} - \frac{13}{55} a^{14} + \frac{18}{55} a^{13} - \frac{24}{55} a^{12} + \frac{2}{5} a^{11} + \frac{1}{55} a^{10} + \frac{2}{5} a^{9} - \frac{1}{55} a^{8} - \frac{13}{55} a^{7} + \frac{19}{55} a^{6} + \frac{19}{55} a^{5} - \frac{27}{55} a^{4} + \frac{8}{55} a^{2} - \frac{21}{55} a + \frac{8}{55}$, $\frac{1}{3355} a^{28} - \frac{14}{3355} a^{27} + \frac{2}{3355} a^{26} + \frac{2}{55} a^{25} + \frac{4}{61} a^{24} + \frac{516}{3355} a^{23} + \frac{49}{671} a^{22} - \frac{146}{305} a^{21} - \frac{1618}{3355} a^{20} - \frac{1442}{3355} a^{19} - \frac{641}{3355} a^{18} - \frac{842}{3355} a^{17} - \frac{1489}{3355} a^{16} + \frac{26}{61} a^{15} + \frac{717}{3355} a^{14} - \frac{1662}{3355} a^{13} - \frac{357}{3355} a^{12} + \frac{1651}{3355} a^{11} + \frac{204}{671} a^{10} + \frac{813}{3355} a^{9} + \frac{130}{671} a^{8} + \frac{421}{3355} a^{7} - \frac{111}{671} a^{6} - \frac{678}{3355} a^{5} - \frac{348}{3355} a^{4} + \frac{558}{3355} a^{3} - \frac{273}{671} a^{2} + \frac{45}{671} a + \frac{26}{671}$, $\frac{1}{3355} a^{29} - \frac{1}{305} a^{27} + \frac{28}{3355} a^{26} - \frac{146}{3355} a^{25} + \frac{119}{3355} a^{24} + \frac{103}{671} a^{23} - \frac{677}{3355} a^{22} - \frac{251}{3355} a^{21} + \frac{49}{671} a^{20} - \frac{1187}{3355} a^{19} - \frac{182}{671} a^{18} + \frac{1302}{3355} a^{17} + \frac{1141}{3355} a^{16} - \frac{918}{3355} a^{15} - \frac{87}{305} a^{14} + \frac{531}{3355} a^{13} + \frac{679}{3355} a^{12} + \frac{832}{3355} a^{11} + \frac{148}{3355} a^{10} - \frac{778}{3355} a^{9} + \frac{6}{305} a^{8} - \frac{47}{305} a^{7} - \frac{457}{3355} a^{6} - \frac{263}{3355} a^{5} - \frac{959}{3355} a^{4} - \frac{812}{3355} a^{3} - \frac{1561}{3355} a^{2} - \frac{1051}{3355} a + \frac{112}{3355}$, $\frac{1}{15438568712622319807244405} a^{30} - \frac{3}{3087713742524463961448881} a^{29} + \frac{406360536594718915140}{3087713742524463961448881} a^{28} - \frac{93263073972558439537}{50618258074171540351621} a^{27} - \frac{31557578805981535471652}{15438568712622319807244405} a^{26} - \frac{1013418820691330042890358}{15438568712622319807244405} a^{25} + \frac{283784318873338264865659}{15438568712622319807244405} a^{24} + \frac{2835641551812527738870488}{15438568712622319807244405} a^{23} - \frac{1832693557254521827898838}{15438568712622319807244405} a^{22} - \frac{326436564272268504953809}{1403506246602029073385855} a^{21} + \frac{4150676148953724861250729}{15438568712622319807244405} a^{20} + \frac{26249799356932267715351}{3087713742524463961448881} a^{19} + \frac{1455950272436973708938392}{3087713742524463961448881} a^{18} - \frac{493545881229691822873551}{1403506246602029073385855} a^{17} - \frac{5086642834455762839161073}{15438568712622319807244405} a^{16} - \frac{3414026859421917176436439}{15438568712622319807244405} a^{15} - \frac{7057940400822981735537}{50618258074171540351621} a^{14} + \frac{98813531813989165999597}{15438568712622319807244405} a^{13} + \frac{2511829424286478037718907}{15438568712622319807244405} a^{12} - \frac{799259088732333213821305}{3087713742524463961448881} a^{11} - \frac{618388894402140490979353}{15438568712622319807244405} a^{10} - \frac{2495312339454563535913246}{15438568712622319807244405} a^{9} + \frac{192979504938391279430914}{3087713742524463961448881} a^{8} + \frac{2062039036817579074312626}{15438568712622319807244405} a^{7} - \frac{985580767795970398357594}{3087713742524463961448881} a^{6} - \frac{5483874548212463818140749}{15438568712622319807244405} a^{5} + \frac{3859719442817885610064499}{15438568712622319807244405} a^{4} + \frac{5003002300223148427692856}{15438568712622319807244405} a^{3} + \frac{116121464275686559594214}{3087713742524463961448881} a^{2} + \frac{1449856433965674974418090}{3087713742524463961448881} a + \frac{4967326869216241833254271}{15438568712622319807244405}$, $\frac{1}{559509168714145492134344481605} a^{31} + \frac{3621}{111901833742829098426868896321} a^{30} + \frac{645672082958342118180943}{50864469883104135648576771055} a^{29} + \frac{17216960142515216013493932}{559509168714145492134344481605} a^{28} + \frac{2996914055612266183405406272}{559509168714145492134344481605} a^{27} + \frac{3943876437771499039640782342}{559509168714145492134344481605} a^{26} - \frac{5030140314686516276799585698}{559509168714145492134344481605} a^{25} - \frac{21775526173381369727686823901}{559509168714145492134344481605} a^{24} - \frac{72242305904905123651990961687}{559509168714145492134344481605} a^{23} + \frac{39473082784960910351576250285}{111901833742829098426868896321} a^{22} + \frac{148384145905153125141069572491}{559509168714145492134344481605} a^{21} - \frac{267721946687276210970317157541}{559509168714145492134344481605} a^{20} - \frac{186039168663991239857384913672}{559509168714145492134344481605} a^{19} - \frac{122811150100572563398890699304}{559509168714145492134344481605} a^{18} + \frac{24565904639685999380408740175}{111901833742829098426868896321} a^{17} - \frac{101393092949343597265500031381}{559509168714145492134344481605} a^{16} - \frac{37554569604919113415236599423}{559509168714145492134344481605} a^{15} + \frac{61550536386545227786431540697}{559509168714145492134344481605} a^{14} - \frac{9695104353587905946092079129}{559509168714145492134344481605} a^{13} - \frac{179560156164492467315462269138}{559509168714145492134344481605} a^{12} - \frac{52185704237692680763201105504}{559509168714145492134344481605} a^{11} - \frac{53300557028636314304553590126}{559509168714145492134344481605} a^{10} + \frac{80701187519259718598646441204}{559509168714145492134344481605} a^{9} - \frac{74068742935061747910615870771}{559509168714145492134344481605} a^{8} + \frac{96719328915093542064552212537}{559509168714145492134344481605} a^{7} - \frac{16885198860105192559268271954}{111901833742829098426868896321} a^{6} - \frac{118699928408787908076629095919}{559509168714145492134344481605} a^{5} - \frac{15186247797545351181140720907}{50864469883104135648576771055} a^{4} + \frac{14616340071148150819739132904}{50864469883104135648576771055} a^{3} + \frac{234161968673296052566409687186}{559509168714145492134344481605} a^{2} + \frac{191907415871919532673267280659}{559509168714145492134344481605} a + \frac{191339507895585902401791329181}{559509168714145492134344481605}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{8}$, which has order $256$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9542212134222.05 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |