Normalized defining polynomial
\( x^{32} - 16 x^{30} + 152 x^{28} - 960 x^{26} + 4524 x^{24} - 16160 x^{22} + 45184 x^{20} - 97984 x^{18} + 166158 x^{16} - 213664 x^{14} + 207712 x^{12} - 142016 x^{10} + 68568 x^{8} - 18816 x^{6} + 3424 x^{4} - 128 x^{2} + 4 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16}$, $\frac{1}{2} a^{17}$, $\frac{1}{2} a^{18}$, $\frac{1}{2} a^{19}$, $\frac{1}{2} a^{20}$, $\frac{1}{2} a^{21}$, $\frac{1}{2} a^{22}$, $\frac{1}{2} a^{23}$, $\frac{1}{2} a^{24}$, $\frac{1}{2} a^{25}$, $\frac{1}{62} a^{26} + \frac{6}{31} a^{24} + \frac{2}{31} a^{22} + \frac{11}{62} a^{20} + \frac{3}{31} a^{18} - \frac{11}{62} a^{16} + \frac{10}{31} a^{14} - \frac{9}{31} a^{12} + \frac{11}{31} a^{10} - \frac{3}{31} a^{8} + \frac{5}{31} a^{6} + \frac{15}{31} a^{4} + \frac{7}{31} a^{2} - \frac{1}{31}$, $\frac{1}{62} a^{27} + \frac{6}{31} a^{25} + \frac{2}{31} a^{23} + \frac{11}{62} a^{21} + \frac{3}{31} a^{19} - \frac{11}{62} a^{17} + \frac{10}{31} a^{15} - \frac{9}{31} a^{13} + \frac{11}{31} a^{11} - \frac{3}{31} a^{9} + \frac{5}{31} a^{7} + \frac{15}{31} a^{5} + \frac{7}{31} a^{3} - \frac{1}{31} a$, $\frac{1}{62} a^{28} + \frac{15}{62} a^{24} - \frac{3}{31} a^{22} - \frac{1}{31} a^{20} + \frac{5}{31} a^{18} - \frac{3}{62} a^{16} - \frac{5}{31} a^{14} - \frac{5}{31} a^{12} - \frac{11}{31} a^{10} + \frac{10}{31} a^{8} - \frac{14}{31} a^{6} + \frac{13}{31} a^{4} + \frac{8}{31} a^{2} + \frac{12}{31}$, $\frac{1}{62} a^{29} + \frac{15}{62} a^{25} - \frac{3}{31} a^{23} - \frac{1}{31} a^{21} + \frac{5}{31} a^{19} - \frac{3}{62} a^{17} - \frac{5}{31} a^{15} - \frac{5}{31} a^{13} - \frac{11}{31} a^{11} + \frac{10}{31} a^{9} - \frac{14}{31} a^{7} + \frac{13}{31} a^{5} + \frac{8}{31} a^{3} + \frac{12}{31} a$, $\frac{1}{96360773033972116799042} a^{30} + \frac{319769124499034457877}{96360773033972116799042} a^{28} - \frac{298448975379448257103}{48180386516986058399521} a^{26} + \frac{18572557681951899967797}{96360773033972116799042} a^{24} + \frac{5193327782622272902803}{96360773033972116799042} a^{22} - \frac{8255421473144608572017}{48180386516986058399521} a^{20} - \frac{10418378289368478388234}{48180386516986058399521} a^{18} + \frac{16362931360001613733051}{96360773033972116799042} a^{16} - \frac{16810654737116004124420}{48180386516986058399521} a^{14} + \frac{10070570833043371677462}{48180386516986058399521} a^{12} - \frac{14408765012316091676909}{48180386516986058399521} a^{10} - \frac{20235420802166882540254}{48180386516986058399521} a^{8} - \frac{3466810361815031722727}{48180386516986058399521} a^{6} - \frac{10069047875753442733906}{48180386516986058399521} a^{4} - \frac{48967160695986614426}{48180386516986058399521} a^{2} + \frac{11881454458779171941916}{48180386516986058399521}$, $\frac{1}{96360773033972116799042} a^{31} + \frac{319769124499034457877}{96360773033972116799042} a^{29} - \frac{298448975379448257103}{48180386516986058399521} a^{27} + \frac{18572557681951899967797}{96360773033972116799042} a^{25} + \frac{5193327782622272902803}{96360773033972116799042} a^{23} - \frac{8255421473144608572017}{48180386516986058399521} a^{21} - \frac{10418378289368478388234}{48180386516986058399521} a^{19} + \frac{16362931360001613733051}{96360773033972116799042} a^{17} - \frac{16810654737116004124420}{48180386516986058399521} a^{15} + \frac{10070570833043371677462}{48180386516986058399521} a^{13} - \frac{14408765012316091676909}{48180386516986058399521} a^{11} - \frac{20235420802166882540254}{48180386516986058399521} a^{9} - \frac{3466810361815031722727}{48180386516986058399521} a^{7} - \frac{10069047875753442733906}{48180386516986058399521} a^{5} - \frac{48967160695986614426}{48180386516986058399521} a^{3} + \frac{11881454458779171941916}{48180386516986058399521} a$
Class group and class number
$C_{3}\times C_{51}$, which has order $153$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{517701136565406420796}{48180386516986058399521} a^{30} + \frac{8251430270940144606278}{48180386516986058399521} a^{28} - \frac{78191128667345673892640}{48180386516986058399521} a^{26} + \frac{492303911846553448315773}{48180386516986058399521} a^{24} - \frac{2312895014693928232679528}{48180386516986058399521} a^{22} + \frac{8230472910963778841809688}{48180386516986058399521} a^{20} - \frac{22916128329017809985172688}{48180386516986058399521} a^{18} + \frac{98845071857423609435480673}{96360773033972116799042} a^{16} - \frac{83265950141538905063633256}{48180386516986058399521} a^{14} + \frac{106087131983018123509642864}{48180386516986058399521} a^{12} - \frac{101971887212174054826194000}{48180386516986058399521} a^{10} + \frac{68415721887623632645371734}{48180386516986058399521} a^{8} - \frac{32353586528624173301383104}{48180386516986058399521} a^{6} + \frac{8401412487793961715162760}{48180386516986058399521} a^{4} - \frac{1572937276069694458774816}{48180386516986058399521} a^{2} + \frac{58759803755999892048248}{48180386516986058399521} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 12949932335324.246 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{16}$ (as 32T32):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_{16}$ |
| Character table for $C_2\times C_{16}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{4}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | $16^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{4}$ | $16^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{32}$ | $16^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{4}$ | $16^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | $16^{2}$ | $16^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||