Normalized defining polynomial
\( x^{32} + 5599 x^{24} + 6799201 x^{16} + 2232620239 x^{8} + 214358881 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(156938077449417789520626992646455296000000000000000000000000=2^{96}\cdot 5^{24}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(560=2^{4}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{560}(1,·)$, $\chi_{560}(363,·)$, $\chi_{560}(517,·)$, $\chi_{560}(519,·)$, $\chi_{560}(13,·)$, $\chi_{560}(153,·)$, $\chi_{560}(281,·)$, $\chi_{560}(27,·)$, $\chi_{560}(29,·)$, $\chi_{560}(421,·)$, $\chi_{560}(167,·)$, $\chi_{560}(169,·)$, $\chi_{560}(433,·)$, $\chi_{560}(307,·)$, $\chi_{560}(309,·)$, $\chi_{560}(351,·)$, $\chi_{560}(447,·)$, $\chi_{560}(449,·)$, $\chi_{560}(71,·)$, $\chi_{560}(141,·)$, $\chi_{560}(83,·)$, $\chi_{560}(223,·)$, $\chi_{560}(97,·)$, $\chi_{560}(99,·)$, $\chi_{560}(293,·)$, $\chi_{560}(491,·)$, $\chi_{560}(237,·)$, $\chi_{560}(239,·)$, $\chi_{560}(211,·)$, $\chi_{560}(503,·)$, $\chi_{560}(377,·)$, $\chi_{560}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{7} a^{16} + \frac{3}{7} a^{8} - \frac{3}{7}$, $\frac{1}{77} a^{17} + \frac{17}{77} a^{9} - \frac{17}{77} a$, $\frac{1}{77} a^{18} + \frac{17}{77} a^{10} - \frac{17}{77} a^{2}$, $\frac{1}{77} a^{19} + \frac{17}{77} a^{11} - \frac{17}{77} a^{3}$, $\frac{1}{77} a^{20} + \frac{17}{77} a^{12} - \frac{17}{77} a^{4}$, $\frac{1}{77} a^{21} + \frac{17}{77} a^{13} - \frac{17}{77} a^{5}$, $\frac{1}{77} a^{22} + \frac{17}{77} a^{14} - \frac{17}{77} a^{6}$, $\frac{1}{77} a^{23} + \frac{17}{77} a^{15} - \frac{17}{77} a^{7}$, $\frac{1}{18114614174277313} a^{24} + \frac{1158432924040211}{18114614174277313} a^{16} - \frac{6645503133536339}{18114614174277313} a^{8} - \frac{139147950106384}{1646783106752483}$, $\frac{1}{18114614174277313} a^{25} - \frac{17840723640134}{18114614174277313} a^{17} - \frac{1218220138546413}{2587802024896759} a^{9} + \frac{351410385118328}{18114614174277313} a$, $\frac{1}{199260755917050443} a^{26} - \frac{23008677561473}{18114614174277313} a^{18} + \frac{78046199499448501}{199260755917050443} a^{10} - \frac{31878487561323125}{199260755917050443} a^{2}$, $\frac{1}{2191868315087554873} a^{27} + \frac{447500781510665}{199260755917050443} a^{19} + \frac{109116248013869948}{313124045012507839} a^{11} - \frac{119863756407812931}{2191868315087554873} a^{3}$, $\frac{1}{24110551465963103603} a^{28} + \frac{10798708881097701}{2191868315087554873} a^{20} + \frac{9275094595982529987}{24110551465963103603} a^{12} - \frac{10823012931380808155}{24110551465963103603} a^{4}$, $\frac{1}{265216066125594139633} a^{29} + \frac{124661997976555097}{24110551465963103603} a^{21} - \frac{17653573275093144167}{265216066125594139633} a^{13} + \frac{64326757871621073205}{265216066125594139633} a^{5}$, $\frac{1}{2917376727381535535963} a^{30} + \frac{124661997976555097}{265216066125594139633} a^{22} - \frac{17653573275093144167}{2917376727381535535963} a^{14} + \frac{1125191022373997631737}{2917376727381535535963} a^{6}$, $\frac{1}{32091144001196890895593} a^{31} + \frac{124661997976555097}{2917376727381535535963} a^{23} + \frac{8734476608869513463722}{32091144001196890895593} a^{15} + \frac{9877321204518604239626}{32091144001196890895593} a^{7}$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{517354891400}{265216066125594139633} a^{29} + \frac{263279087968860}{24110551465963103603} a^{21} + \frac{3512907953406993230}{265216066125594139633} a^{13} + \frac{1147344951726799610803}{265216066125594139633} a^{5} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.2 | $x^{4} - 7 x^{2} + 147$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |