Normalized defining polynomial
\( x^{32} + 48 x^{30} + 1128 x^{28} + 16800 x^{26} + 175155 x^{24} + 1339752 x^{22} + 7694204 x^{20} + 33445200 x^{18} + 109690049 x^{16} + 267441600 x^{14} + 471188096 x^{12} + 570415104 x^{10} + 436417280 x^{8} + 180264960 x^{6} + 39043072 x^{4} + 2359296 x^{2} + 65536 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(156938077449417789520626992646455296000000000000000000000000=2^{96}\cdot 5^{24}\cdot 7^{16}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $70.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(560=2^{4}\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{560}(1,·)$, $\chi_{560}(321,·)$, $\chi_{560}(267,·)$, $\chi_{560}(141,·)$, $\chi_{560}(407,·)$, $\chi_{560}(281,·)$, $\chi_{560}(27,·)$, $\chi_{560}(29,·)$, $\chi_{560}(547,·)$, $\chi_{560}(421,·)$, $\chi_{560}(167,·)$, $\chi_{560}(41,·)$, $\chi_{560}(43,·)$, $\chi_{560}(307,·)$, $\chi_{560}(181,·)$, $\chi_{560}(183,·)$, $\chi_{560}(309,·)$, $\chi_{560}(449,·)$, $\chi_{560}(323,·)$, $\chi_{560}(69,·)$, $\chi_{560}(461,·)$, $\chi_{560}(463,·)$, $\chi_{560}(209,·)$, $\chi_{560}(83,·)$, $\chi_{560}(169,·)$, $\chi_{560}(349,·)$, $\chi_{560}(223,·)$, $\chi_{560}(489,·)$, $\chi_{560}(363,·)$, $\chi_{560}(503,·)$, $\chi_{560}(447,·)$, $\chi_{560}(127,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{10} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{19} + \frac{3}{8} a^{11} - \frac{1}{2} a^{7} + \frac{1}{8} a^{3}$, $\frac{1}{16} a^{20} - \frac{1}{2} a^{16} + \frac{3}{16} a^{12} - \frac{1}{2} a^{10} - \frac{1}{4} a^{8} + \frac{1}{16} a^{4}$, $\frac{1}{32} a^{21} - \frac{1}{4} a^{17} - \frac{13}{32} a^{13} - \frac{1}{4} a^{11} + \frac{3}{8} a^{9} - \frac{1}{2} a^{7} + \frac{1}{32} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{22} - \frac{1}{8} a^{18} - \frac{1}{2} a^{16} - \frac{13}{64} a^{14} + \frac{3}{8} a^{12} - \frac{5}{16} a^{10} + \frac{1}{4} a^{8} + \frac{1}{64} a^{6} + \frac{1}{4} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{128} a^{23} - \frac{1}{16} a^{19} - \frac{1}{4} a^{17} + \frac{51}{128} a^{15} - \frac{5}{16} a^{13} + \frac{11}{32} a^{11} - \frac{3}{8} a^{9} + \frac{1}{128} a^{7} + \frac{1}{8} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{256} a^{24} - \frac{1}{32} a^{20} - \frac{1}{8} a^{18} - \frac{77}{256} a^{16} - \frac{5}{32} a^{14} - \frac{21}{64} a^{12} - \frac{3}{16} a^{10} - \frac{127}{256} a^{8} - \frac{7}{16} a^{6} + \frac{1}{16} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{512} a^{25} - \frac{1}{64} a^{21} - \frac{1}{16} a^{19} - \frac{77}{512} a^{17} - \frac{5}{64} a^{15} + \frac{43}{128} a^{13} + \frac{13}{32} a^{11} + \frac{129}{512} a^{9} - \frac{7}{32} a^{7} - \frac{15}{32} a^{5} + \frac{3}{8} a^{3}$, $\frac{1}{1024} a^{26} - \frac{1}{128} a^{22} - \frac{1}{32} a^{20} - \frac{77}{1024} a^{18} - \frac{5}{128} a^{16} + \frac{43}{256} a^{14} + \frac{13}{64} a^{12} - \frac{383}{1024} a^{10} - \frac{7}{64} a^{8} - \frac{15}{64} a^{6} - \frac{5}{16} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2048} a^{27} - \frac{1}{256} a^{23} - \frac{1}{64} a^{21} - \frac{77}{2048} a^{19} - \frac{5}{256} a^{17} - \frac{213}{512} a^{15} + \frac{13}{128} a^{13} + \frac{641}{2048} a^{11} + \frac{57}{128} a^{9} - \frac{15}{128} a^{7} + \frac{11}{32} a^{5} - \frac{1}{4} a^{3}$, $\frac{1}{323584} a^{28} + \frac{13}{40448} a^{24} + \frac{53}{10112} a^{22} + \frac{7475}{323584} a^{20} - \frac{3461}{40448} a^{18} - \frac{21825}{80896} a^{16} + \frac{6777}{20224} a^{14} - \frac{128319}{323584} a^{12} - \frac{9735}{20224} a^{10} - \frac{1057}{2528} a^{8} - \frac{623}{2528} a^{6} + \frac{153}{632} a^{4} + \frac{51}{158} a^{2} + \frac{21}{79}$, $\frac{1}{647168} a^{29} + \frac{13}{80896} a^{25} + \frac{53}{20224} a^{23} + \frac{7475}{647168} a^{21} - \frac{3461}{80896} a^{19} - \frac{21825}{161792} a^{17} + \frac{6777}{40448} a^{15} - \frac{128319}{647168} a^{13} + \frac{10489}{40448} a^{11} + \frac{1471}{5056} a^{9} + \frac{1905}{5056} a^{7} + \frac{153}{1264} a^{5} + \frac{51}{316} a^{3} - \frac{29}{79} a$, $\frac{1}{28609011724986074536124433741148889836404736} a^{30} + \frac{2107281496622078069378366286412976417}{3576126465623259317015554217643611229550592} a^{28} - \frac{1449712813286389198406819310051641858729}{3576126465623259317015554217643611229550592} a^{26} - \frac{1559849707053297117528632475259266320527}{894031616405814829253888554410902807387648} a^{24} + \frac{53331493514643676291335221269051723610547}{28609011724986074536124433741148889836404736} a^{22} + \frac{17425752500843862847855641775516556283527}{1788063232811629658507777108821805614775296} a^{20} - \frac{23406831460992854244307200899378428838933}{7152252931246518634031108435287222459101184} a^{18} + \frac{29377255241943984093272468329768944876539}{1788063232811629658507777108821805614775296} a^{16} + \frac{1957896690610294059322399205866484855769345}{28609011724986074536124433741148889836404736} a^{14} - \frac{1618518617910553108992009210109076739128365}{3576126465623259317015554217643611229550592} a^{12} + \frac{15126947771077145098838133098549418308261}{1788063232811629658507777108821805614775296} a^{10} + \frac{151102427614781187619811190639413716324087}{447015808202907414626944277205451403693824} a^{8} - \frac{13157541765866654141062984552126758992695}{111753952050726853656736069301362850923456} a^{6} - \frac{13945142262387176979747126323124102256627}{27938488012681713414184017325340712730864} a^{4} - \frac{2600965418867678295154107543370497779453}{6984622003170428353546004331335178182716} a^{2} - \frac{102724643999952174695437240972561465969}{1746155500792607088386501082833794545679}$, $\frac{1}{57218023449972149072248867482297779672809472} a^{31} + \frac{2107281496622078069378366286412976417}{7152252931246518634031108435287222459101184} a^{29} - \frac{1449712813286389198406819310051641858729}{7152252931246518634031108435287222459101184} a^{27} - \frac{1559849707053297117528632475259266320527}{1788063232811629658507777108821805614775296} a^{25} + \frac{53331493514643676291335221269051723610547}{57218023449972149072248867482297779672809472} a^{23} + \frac{17425752500843862847855641775516556283527}{3576126465623259317015554217643611229550592} a^{21} - \frac{23406831460992854244307200899378428838933}{14304505862493037268062216870574444918202368} a^{19} + \frac{29377255241943984093272468329768944876539}{3576126465623259317015554217643611229550592} a^{17} - \frac{26651115034375780476802034535282404980635391}{57218023449972149072248867482297779672809472} a^{15} + \frac{1957607847712706208023545007534534490422227}{7152252931246518634031108435287222459101184} a^{13} + \frac{15126947771077145098838133098549418308261}{3576126465623259317015554217643611229550592} a^{11} + \frac{151102427614781187619811190639413716324087}{894031616405814829253888554410902807387648} a^{9} - \frac{13157541765866654141062984552126758992695}{223507904101453707313472138602725701846912} a^{7} + \frac{13993345750294536434436891002216610474237}{55876976025363426828368034650681425461728} a^{5} - \frac{2600965418867678295154107543370497779453}{13969244006340856707092008662670356365432} a^{3} + \frac{821715428396327456845531920930616539855}{1746155500792607088386501082833794545679} a$
Class group and class number
$C_{2}\times C_{4}\times C_{80}\times C_{1360}$, which has order $870400$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 48613521256.81357 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |