Normalized defining polynomial
\( x^{32} - 16 x^{31} + 184 x^{30} - 1520 x^{29} + 10332 x^{28} - 58576 x^{27} + 287336 x^{26} - 1231568 x^{25} + 4678388 x^{24} - 15845336 x^{23} + 48150868 x^{22} - 131698920 x^{21} + 325052602 x^{20} - 724763816 x^{19} + 1460398932 x^{18} - 2657926856 x^{17} + 4363838181 x^{16} - 6450379432 x^{15} + 8560966476 x^{14} - 10166839032 x^{13} + 10757915718 x^{12} - 10090253496 x^{11} + 8336518556 x^{10} - 6020922808 x^{9} + 3765841276 x^{8} - 2015958408 x^{7} + 909882172 x^{6} - 339412280 x^{5} + 101809462 x^{4} - 23591480 x^{3} + 3962076 x^{2} - 429016 x + 22481 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{82} a^{24} - \frac{6}{41} a^{23} + \frac{15}{82} a^{22} + \frac{13}{82} a^{21} + \frac{7}{82} a^{20} - \frac{4}{41} a^{19} + \frac{19}{82} a^{18} - \frac{8}{41} a^{17} - \frac{3}{41} a^{16} - \frac{11}{41} a^{15} - \frac{15}{82} a^{14} - \frac{11}{82} a^{13} + \frac{17}{82} a^{12} + \frac{13}{41} a^{11} + \frac{13}{82} a^{10} - \frac{8}{41} a^{9} + \frac{18}{41} a^{8} - \frac{9}{41} a^{7} - \frac{1}{82} a^{6} - \frac{3}{82} a^{5} - \frac{19}{82} a^{4} + \frac{17}{41} a^{3} + \frac{13}{82} a^{2} - \frac{3}{41} a + \frac{19}{82}$, $\frac{1}{82} a^{25} - \frac{3}{41} a^{23} - \frac{6}{41} a^{22} - \frac{1}{82} a^{21} - \frac{3}{41} a^{20} + \frac{5}{82} a^{19} + \frac{7}{82} a^{18} + \frac{7}{82} a^{17} - \frac{6}{41} a^{16} + \frac{4}{41} a^{15} + \frac{7}{41} a^{14} - \frac{33}{82} a^{13} - \frac{8}{41} a^{12} - \frac{3}{82} a^{11} + \frac{17}{82} a^{10} - \frac{33}{82} a^{9} + \frac{2}{41} a^{8} - \frac{6}{41} a^{7} + \frac{13}{41} a^{6} + \frac{27}{82} a^{5} - \frac{15}{41} a^{4} + \frac{11}{82} a^{3} + \frac{27}{82} a^{2} - \frac{6}{41} a - \frac{9}{41}$, $\frac{1}{82} a^{26} - \frac{1}{41} a^{23} + \frac{7}{82} a^{22} - \frac{5}{41} a^{21} + \frac{3}{41} a^{20} - \frac{1}{41} a^{18} + \frac{15}{82} a^{17} + \frac{13}{82} a^{16} - \frac{18}{41} a^{15} - \frac{1}{2} a^{14} - \frac{12}{41} a^{12} - \frac{16}{41} a^{11} + \frac{2}{41} a^{10} + \frac{31}{82} a^{9} - \frac{1}{82} a^{8} + \frac{21}{82} a^{6} + \frac{17}{41} a^{5} + \frac{10}{41} a^{4} + \frac{13}{41} a^{3} + \frac{25}{82} a^{2} - \frac{13}{82} a - \frac{9}{82}$, $\frac{1}{82} a^{27} - \frac{17}{82} a^{23} + \frac{10}{41} a^{22} - \frac{9}{82} a^{21} + \frac{7}{41} a^{20} - \frac{9}{41} a^{19} + \frac{6}{41} a^{18} - \frac{19}{82} a^{17} - \frac{7}{82} a^{16} - \frac{3}{82} a^{15} - \frac{15}{41} a^{14} - \frac{5}{82} a^{13} + \frac{1}{41} a^{12} - \frac{13}{41} a^{11} + \frac{8}{41} a^{10} - \frac{33}{82} a^{9} + \frac{31}{82} a^{8} - \frac{15}{82} a^{7} + \frac{16}{41} a^{6} - \frac{27}{82} a^{5} - \frac{6}{41} a^{4} + \frac{11}{82} a^{3} - \frac{14}{41} a^{2} - \frac{21}{82} a - \frac{3}{82}$, $\frac{1}{246} a^{28} + \frac{1}{246} a^{27} - \frac{1}{246} a^{26} + \frac{1}{246} a^{25} - \frac{1}{246} a^{24} - \frac{29}{246} a^{23} + \frac{9}{82} a^{22} + \frac{17}{246} a^{21} + \frac{55}{246} a^{20} - \frac{1}{41} a^{19} + \frac{10}{41} a^{18} - \frac{22}{123} a^{17} - \frac{49}{246} a^{16} - \frac{95}{246} a^{15} - \frac{5}{82} a^{14} - \frac{7}{246} a^{13} - \frac{31}{246} a^{12} + \frac{11}{41} a^{11} + \frac{20}{123} a^{10} + \frac{1}{41} a^{9} + \frac{35}{82} a^{8} + \frac{15}{82} a^{7} - \frac{47}{246} a^{6} - \frac{53}{246} a^{5} + \frac{7}{123} a^{4} - \frac{7}{82} a^{3} + \frac{79}{246} a^{2} - \frac{37}{246} a - \frac{59}{123}$, $\frac{1}{246} a^{29} + \frac{1}{246} a^{27} - \frac{1}{246} a^{26} + \frac{1}{246} a^{25} - \frac{1}{246} a^{24} + \frac{19}{123} a^{23} + \frac{29}{246} a^{22} + \frac{10}{123} a^{21} + \frac{11}{246} a^{20} + \frac{19}{82} a^{19} - \frac{10}{123} a^{18} - \frac{13}{123} a^{17} - \frac{29}{123} a^{16} - \frac{11}{123} a^{15} + \frac{47}{246} a^{14} - \frac{11}{41} a^{13} - \frac{29}{246} a^{12} - \frac{53}{246} a^{11} - \frac{44}{123} a^{10} + \frac{19}{41} a^{9} + \frac{6}{41} a^{8} - \frac{22}{123} a^{7} - \frac{15}{82} a^{6} + \frac{7}{246} a^{5} - \frac{119}{246} a^{4} + \frac{11}{123} a^{3} - \frac{89}{246} a^{2} - \frac{19}{82} a + \frac{103}{246}$, $\frac{1}{714753319883723154640236426} a^{30} - \frac{5}{238251106627907718213412142} a^{29} + \frac{177460860321758470506364}{119125553313953859106706071} a^{28} + \frac{2526295535014316639423425}{714753319883723154640236426} a^{27} + \frac{1734702419678173289371270}{357376659941861577320118213} a^{26} - \frac{563732943753859574204206}{357376659941861577320118213} a^{25} - \frac{625504164017440135950685}{119125553313953859106706071} a^{24} + \frac{18235645843648694469274967}{357376659941861577320118213} a^{23} - \frac{6705013355835256272118453}{714753319883723154640236426} a^{22} + \frac{55286755215044967621026423}{238251106627907718213412142} a^{21} + \frac{36850315138588639891492378}{357376659941861577320118213} a^{20} + \frac{82559251479646209936004111}{714753319883723154640236426} a^{19} + \frac{1856904151280456661939829}{714753319883723154640236426} a^{18} - \frac{56733093506144183988682075}{357376659941861577320118213} a^{17} - \frac{243972828180838758339285}{238251106627907718213412142} a^{16} + \frac{178265286206547906568414340}{357376659941861577320118213} a^{15} - \frac{12512193698071553321674203}{238251106627907718213412142} a^{14} + \frac{100720348390355127345665459}{714753319883723154640236426} a^{13} - \frac{134262384821679195083612054}{357376659941861577320118213} a^{12} + \frac{301269228979109239553047913}{714753319883723154640236426} a^{11} - \frac{317707292200990663691269441}{714753319883723154640236426} a^{10} - \frac{24826765203455510126669163}{119125553313953859106706071} a^{9} - \frac{106648491054351015379650755}{714753319883723154640236426} a^{8} + \frac{22022105488139882805183115}{119125553313953859106706071} a^{7} + \frac{43914791233930700341983826}{119125553313953859106706071} a^{6} + \frac{54409701506985333607048416}{119125553313953859106706071} a^{5} + \frac{54383733227771459815735726}{357376659941861577320118213} a^{4} - \frac{57958043167978349885883418}{357376659941861577320118213} a^{3} + \frac{224713756622392988595897941}{714753319883723154640236426} a^{2} - \frac{68281468114779279102341828}{357376659941861577320118213} a + \frac{58182503276038640502928237}{714753319883723154640236426}$, $\frac{1}{15096304869264116749156433553546} a^{31} + \frac{3515}{5032101623088038916385477851182} a^{30} + \frac{2740420108801904034865679525}{7548152434632058374578216776773} a^{29} - \frac{6860637698199355576296676327}{15096304869264116749156433553546} a^{28} + \frac{38124183247519946720416745}{368202557786929676808693501306} a^{27} - \frac{8926991874433593602925369293}{7548152434632058374578216776773} a^{26} - \frac{61468928476970764574425253197}{15096304869264116749156433553546} a^{25} + \frac{47514361945045964762375214545}{15096304869264116749156433553546} a^{24} + \frac{193523946452260660406745951461}{15096304869264116749156433553546} a^{23} - \frac{557269871560777026119629077277}{15096304869264116749156433553546} a^{22} + \frac{1044948978808611434599665984893}{5032101623088038916385477851182} a^{21} - \frac{1816046938697625086550985833553}{7548152434632058374578216776773} a^{20} - \frac{3062854607415076624857312259169}{15096304869264116749156433553546} a^{19} - \frac{1100874576264626030240409382003}{15096304869264116749156433553546} a^{18} - \frac{1460979569862531535322679133859}{7548152434632058374578216776773} a^{17} + \frac{1477843376237862123628253630995}{7548152434632058374578216776773} a^{16} + \frac{1844048058336600683632949807661}{5032101623088038916385477851182} a^{15} + \frac{346773137545122273595907500021}{15096304869264116749156433553546} a^{14} - \frac{7018688322331887339305981478767}{15096304869264116749156433553546} a^{13} + \frac{471062423934444159152536521682}{7548152434632058374578216776773} a^{12} + \frac{47035276067300782260775833945}{5032101623088038916385477851182} a^{11} + \frac{522830858936250311727729726507}{5032101623088038916385477851182} a^{10} + \frac{2668565377182771524731455441806}{7548152434632058374578216776773} a^{9} + \frac{21640069376220540234607673266}{61367092964488279468115583551} a^{8} - \frac{1891538413601929844202298081564}{7548152434632058374578216776773} a^{7} + \frac{2306393001402525815309532069941}{7548152434632058374578216776773} a^{6} + \frac{3018484038442092307534484676583}{15096304869264116749156433553546} a^{5} + \frac{184152986610341465815835107201}{15096304869264116749156433553546} a^{4} + \frac{848278101521226363361148534954}{2516050811544019458192738925591} a^{3} + \frac{4865310469986697675780142682499}{15096304869264116749156433553546} a^{2} + \frac{465498231097277420273932579217}{5032101623088038916385477851182} a + \frac{141442144675134263215674728623}{5032101623088038916385477851182}$
Class group and class number
$C_{2}\times C_{10}\times C_{40}$, which has order $800$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35034437667347.797 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |