Properties

Label 32.0.156...000.5
Degree $32$
Signature $[0, 16]$
Discriminant $1.569\times 10^{59}$
Root discriminant \(70.77\)
Ramified primes $2,5,7$
Class number $800$ (GRH)
Class group [2, 10, 40] (GRH)
Galois group $C_2\times C_4^2$ (as 32T36)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 16*x^31 + 184*x^30 - 1520*x^29 + 10332*x^28 - 58576*x^27 + 287336*x^26 - 1231568*x^25 + 4678388*x^24 - 15845336*x^23 + 48150868*x^22 - 131698920*x^21 + 325052602*x^20 - 724763816*x^19 + 1460398932*x^18 - 2657926856*x^17 + 4363838181*x^16 - 6450379432*x^15 + 8560966476*x^14 - 10166839032*x^13 + 10757915718*x^12 - 10090253496*x^11 + 8336518556*x^10 - 6020922808*x^9 + 3765841276*x^8 - 2015958408*x^7 + 909882172*x^6 - 339412280*x^5 + 101809462*x^4 - 23591480*x^3 + 3962076*x^2 - 429016*x + 22481)
 
gp: K = bnfinit(y^32 - 16*y^31 + 184*y^30 - 1520*y^29 + 10332*y^28 - 58576*y^27 + 287336*y^26 - 1231568*y^25 + 4678388*y^24 - 15845336*y^23 + 48150868*y^22 - 131698920*y^21 + 325052602*y^20 - 724763816*y^19 + 1460398932*y^18 - 2657926856*y^17 + 4363838181*y^16 - 6450379432*y^15 + 8560966476*y^14 - 10166839032*y^13 + 10757915718*y^12 - 10090253496*y^11 + 8336518556*y^10 - 6020922808*y^9 + 3765841276*y^8 - 2015958408*y^7 + 909882172*y^6 - 339412280*y^5 + 101809462*y^4 - 23591480*y^3 + 3962076*y^2 - 429016*y + 22481, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^32 - 16*x^31 + 184*x^30 - 1520*x^29 + 10332*x^28 - 58576*x^27 + 287336*x^26 - 1231568*x^25 + 4678388*x^24 - 15845336*x^23 + 48150868*x^22 - 131698920*x^21 + 325052602*x^20 - 724763816*x^19 + 1460398932*x^18 - 2657926856*x^17 + 4363838181*x^16 - 6450379432*x^15 + 8560966476*x^14 - 10166839032*x^13 + 10757915718*x^12 - 10090253496*x^11 + 8336518556*x^10 - 6020922808*x^9 + 3765841276*x^8 - 2015958408*x^7 + 909882172*x^6 - 339412280*x^5 + 101809462*x^4 - 23591480*x^3 + 3962076*x^2 - 429016*x + 22481);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 16*x^31 + 184*x^30 - 1520*x^29 + 10332*x^28 - 58576*x^27 + 287336*x^26 - 1231568*x^25 + 4678388*x^24 - 15845336*x^23 + 48150868*x^22 - 131698920*x^21 + 325052602*x^20 - 724763816*x^19 + 1460398932*x^18 - 2657926856*x^17 + 4363838181*x^16 - 6450379432*x^15 + 8560966476*x^14 - 10166839032*x^13 + 10757915718*x^12 - 10090253496*x^11 + 8336518556*x^10 - 6020922808*x^9 + 3765841276*x^8 - 2015958408*x^7 + 909882172*x^6 - 339412280*x^5 + 101809462*x^4 - 23591480*x^3 + 3962076*x^2 - 429016*x + 22481)
 

\( x^{32} - 16 x^{31} + 184 x^{30} - 1520 x^{29} + 10332 x^{28} - 58576 x^{27} + 287336 x^{26} + \cdots + 22481 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $32$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 16]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(156938077449417789520626992646455296000000000000000000000000\) \(\medspace = 2^{96}\cdot 5^{24}\cdot 7^{16}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(70.77\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2^{3}5^{3/4}7^{1/2}\approx 70.7728215461241$
Ramified primes:   \(2\), \(5\), \(7\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $32$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(560=2^{4}\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{560}(1,·)$, $\chi_{560}(517,·)$, $\chi_{560}(321,·)$, $\chi_{560}(139,·)$, $\chi_{560}(13,·)$, $\chi_{560}(531,·)$, $\chi_{560}(533,·)$, $\chi_{560}(407,·)$, $\chi_{560}(281,·)$, $\chi_{560}(419,·)$, $\chi_{560}(293,·)$, $\chi_{560}(167,·)$, $\chi_{560}(41,·)$, $\chi_{560}(183,·)$, $\chi_{560}(447,·)$, $\chi_{560}(449,·)$, $\chi_{560}(197,·)$, $\chi_{560}(463,·)$, $\chi_{560}(209,·)$, $\chi_{560}(211,·)$, $\chi_{560}(169,·)$, $\chi_{560}(477,·)$, $\chi_{560}(223,·)$, $\chi_{560}(99,·)$, $\chi_{560}(379,·)$, $\chi_{560}(489,·)$, $\chi_{560}(491,·)$, $\chi_{560}(237,·)$, $\chi_{560}(503,·)$, $\chi_{560}(251,·)$, $\chi_{560}(253,·)$, $\chi_{560}(127,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{32768}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{8}-\frac{1}{2}$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{9}-\frac{1}{2}a$, $\frac{1}{2}a^{18}-\frac{1}{2}a^{10}-\frac{1}{2}a^{2}$, $\frac{1}{2}a^{19}-\frac{1}{2}a^{11}-\frac{1}{2}a^{3}$, $\frac{1}{2}a^{20}-\frac{1}{2}a^{12}-\frac{1}{2}a^{4}$, $\frac{1}{2}a^{21}-\frac{1}{2}a^{13}-\frac{1}{2}a^{5}$, $\frac{1}{2}a^{22}-\frac{1}{2}a^{14}-\frac{1}{2}a^{6}$, $\frac{1}{2}a^{23}-\frac{1}{2}a^{15}-\frac{1}{2}a^{7}$, $\frac{1}{82}a^{24}-\frac{6}{41}a^{23}+\frac{15}{82}a^{22}+\frac{13}{82}a^{21}+\frac{7}{82}a^{20}-\frac{4}{41}a^{19}+\frac{19}{82}a^{18}-\frac{8}{41}a^{17}-\frac{3}{41}a^{16}-\frac{11}{41}a^{15}-\frac{15}{82}a^{14}-\frac{11}{82}a^{13}+\frac{17}{82}a^{12}+\frac{13}{41}a^{11}+\frac{13}{82}a^{10}-\frac{8}{41}a^{9}+\frac{18}{41}a^{8}-\frac{9}{41}a^{7}-\frac{1}{82}a^{6}-\frac{3}{82}a^{5}-\frac{19}{82}a^{4}+\frac{17}{41}a^{3}+\frac{13}{82}a^{2}-\frac{3}{41}a+\frac{19}{82}$, $\frac{1}{82}a^{25}-\frac{3}{41}a^{23}-\frac{6}{41}a^{22}-\frac{1}{82}a^{21}-\frac{3}{41}a^{20}+\frac{5}{82}a^{19}+\frac{7}{82}a^{18}+\frac{7}{82}a^{17}-\frac{6}{41}a^{16}+\frac{4}{41}a^{15}+\frac{7}{41}a^{14}-\frac{33}{82}a^{13}-\frac{8}{41}a^{12}-\frac{3}{82}a^{11}+\frac{17}{82}a^{10}-\frac{33}{82}a^{9}+\frac{2}{41}a^{8}-\frac{6}{41}a^{7}+\frac{13}{41}a^{6}+\frac{27}{82}a^{5}-\frac{15}{41}a^{4}+\frac{11}{82}a^{3}+\frac{27}{82}a^{2}-\frac{6}{41}a-\frac{9}{41}$, $\frac{1}{82}a^{26}-\frac{1}{41}a^{23}+\frac{7}{82}a^{22}-\frac{5}{41}a^{21}+\frac{3}{41}a^{20}-\frac{1}{41}a^{18}+\frac{15}{82}a^{17}+\frac{13}{82}a^{16}-\frac{18}{41}a^{15}-\frac{1}{2}a^{14}-\frac{12}{41}a^{12}-\frac{16}{41}a^{11}+\frac{2}{41}a^{10}+\frac{31}{82}a^{9}-\frac{1}{82}a^{8}+\frac{21}{82}a^{6}+\frac{17}{41}a^{5}+\frac{10}{41}a^{4}+\frac{13}{41}a^{3}+\frac{25}{82}a^{2}-\frac{13}{82}a-\frac{9}{82}$, $\frac{1}{82}a^{27}-\frac{17}{82}a^{23}+\frac{10}{41}a^{22}-\frac{9}{82}a^{21}+\frac{7}{41}a^{20}-\frac{9}{41}a^{19}+\frac{6}{41}a^{18}-\frac{19}{82}a^{17}-\frac{7}{82}a^{16}-\frac{3}{82}a^{15}-\frac{15}{41}a^{14}-\frac{5}{82}a^{13}+\frac{1}{41}a^{12}-\frac{13}{41}a^{11}+\frac{8}{41}a^{10}-\frac{33}{82}a^{9}+\frac{31}{82}a^{8}-\frac{15}{82}a^{7}+\frac{16}{41}a^{6}-\frac{27}{82}a^{5}-\frac{6}{41}a^{4}+\frac{11}{82}a^{3}-\frac{14}{41}a^{2}-\frac{21}{82}a-\frac{3}{82}$, $\frac{1}{246}a^{28}+\frac{1}{246}a^{27}-\frac{1}{246}a^{26}+\frac{1}{246}a^{25}-\frac{1}{246}a^{24}-\frac{29}{246}a^{23}+\frac{9}{82}a^{22}+\frac{17}{246}a^{21}+\frac{55}{246}a^{20}-\frac{1}{41}a^{19}+\frac{10}{41}a^{18}-\frac{22}{123}a^{17}-\frac{49}{246}a^{16}-\frac{95}{246}a^{15}-\frac{5}{82}a^{14}-\frac{7}{246}a^{13}-\frac{31}{246}a^{12}+\frac{11}{41}a^{11}+\frac{20}{123}a^{10}+\frac{1}{41}a^{9}+\frac{35}{82}a^{8}+\frac{15}{82}a^{7}-\frac{47}{246}a^{6}-\frac{53}{246}a^{5}+\frac{7}{123}a^{4}-\frac{7}{82}a^{3}+\frac{79}{246}a^{2}-\frac{37}{246}a-\frac{59}{123}$, $\frac{1}{246}a^{29}+\frac{1}{246}a^{27}-\frac{1}{246}a^{26}+\frac{1}{246}a^{25}-\frac{1}{246}a^{24}+\frac{19}{123}a^{23}+\frac{29}{246}a^{22}+\frac{10}{123}a^{21}+\frac{11}{246}a^{20}+\frac{19}{82}a^{19}-\frac{10}{123}a^{18}-\frac{13}{123}a^{17}-\frac{29}{123}a^{16}-\frac{11}{123}a^{15}+\frac{47}{246}a^{14}-\frac{11}{41}a^{13}-\frac{29}{246}a^{12}-\frac{53}{246}a^{11}-\frac{44}{123}a^{10}+\frac{19}{41}a^{9}+\frac{6}{41}a^{8}-\frac{22}{123}a^{7}-\frac{15}{82}a^{6}+\frac{7}{246}a^{5}-\frac{119}{246}a^{4}+\frac{11}{123}a^{3}-\frac{89}{246}a^{2}-\frac{19}{82}a+\frac{103}{246}$, $\frac{1}{71\!\cdots\!26}a^{30}-\frac{5}{23\!\cdots\!42}a^{29}+\frac{17\!\cdots\!64}{11\!\cdots\!71}a^{28}+\frac{25\!\cdots\!25}{71\!\cdots\!26}a^{27}+\frac{17\!\cdots\!70}{35\!\cdots\!13}a^{26}-\frac{56\!\cdots\!06}{35\!\cdots\!13}a^{25}-\frac{62\!\cdots\!85}{11\!\cdots\!71}a^{24}+\frac{18\!\cdots\!67}{35\!\cdots\!13}a^{23}-\frac{67\!\cdots\!53}{71\!\cdots\!26}a^{22}+\frac{55\!\cdots\!23}{23\!\cdots\!42}a^{21}+\frac{36\!\cdots\!78}{35\!\cdots\!13}a^{20}+\frac{82\!\cdots\!11}{71\!\cdots\!26}a^{19}+\frac{18\!\cdots\!29}{71\!\cdots\!26}a^{18}-\frac{56\!\cdots\!75}{35\!\cdots\!13}a^{17}-\frac{24\!\cdots\!85}{23\!\cdots\!42}a^{16}+\frac{17\!\cdots\!40}{35\!\cdots\!13}a^{15}-\frac{12\!\cdots\!03}{23\!\cdots\!42}a^{14}+\frac{10\!\cdots\!59}{71\!\cdots\!26}a^{13}-\frac{13\!\cdots\!54}{35\!\cdots\!13}a^{12}+\frac{30\!\cdots\!13}{71\!\cdots\!26}a^{11}-\frac{31\!\cdots\!41}{71\!\cdots\!26}a^{10}-\frac{24\!\cdots\!63}{11\!\cdots\!71}a^{9}-\frac{10\!\cdots\!55}{71\!\cdots\!26}a^{8}+\frac{22\!\cdots\!15}{11\!\cdots\!71}a^{7}+\frac{43\!\cdots\!26}{11\!\cdots\!71}a^{6}+\frac{54\!\cdots\!16}{11\!\cdots\!71}a^{5}+\frac{54\!\cdots\!26}{35\!\cdots\!13}a^{4}-\frac{57\!\cdots\!18}{35\!\cdots\!13}a^{3}+\frac{22\!\cdots\!41}{71\!\cdots\!26}a^{2}-\frac{68\!\cdots\!28}{35\!\cdots\!13}a+\frac{58\!\cdots\!37}{71\!\cdots\!26}$, $\frac{1}{15\!\cdots\!46}a^{31}+\frac{3515}{50\!\cdots\!82}a^{30}+\frac{27\!\cdots\!25}{75\!\cdots\!73}a^{29}-\frac{68\!\cdots\!27}{15\!\cdots\!46}a^{28}+\frac{38\!\cdots\!45}{36\!\cdots\!06}a^{27}-\frac{89\!\cdots\!93}{75\!\cdots\!73}a^{26}-\frac{61\!\cdots\!97}{15\!\cdots\!46}a^{25}+\frac{47\!\cdots\!45}{15\!\cdots\!46}a^{24}+\frac{19\!\cdots\!61}{15\!\cdots\!46}a^{23}-\frac{55\!\cdots\!77}{15\!\cdots\!46}a^{22}+\frac{10\!\cdots\!93}{50\!\cdots\!82}a^{21}-\frac{18\!\cdots\!53}{75\!\cdots\!73}a^{20}-\frac{30\!\cdots\!69}{15\!\cdots\!46}a^{19}-\frac{11\!\cdots\!03}{15\!\cdots\!46}a^{18}-\frac{14\!\cdots\!59}{75\!\cdots\!73}a^{17}+\frac{14\!\cdots\!95}{75\!\cdots\!73}a^{16}+\frac{18\!\cdots\!61}{50\!\cdots\!82}a^{15}+\frac{34\!\cdots\!21}{15\!\cdots\!46}a^{14}-\frac{70\!\cdots\!67}{15\!\cdots\!46}a^{13}+\frac{47\!\cdots\!82}{75\!\cdots\!73}a^{12}+\frac{47\!\cdots\!45}{50\!\cdots\!82}a^{11}+\frac{52\!\cdots\!07}{50\!\cdots\!82}a^{10}+\frac{26\!\cdots\!06}{75\!\cdots\!73}a^{9}+\frac{21\!\cdots\!66}{61\!\cdots\!51}a^{8}-\frac{18\!\cdots\!64}{75\!\cdots\!73}a^{7}+\frac{23\!\cdots\!41}{75\!\cdots\!73}a^{6}+\frac{30\!\cdots\!83}{15\!\cdots\!46}a^{5}+\frac{18\!\cdots\!01}{15\!\cdots\!46}a^{4}+\frac{84\!\cdots\!54}{25\!\cdots\!91}a^{3}+\frac{48\!\cdots\!99}{15\!\cdots\!46}a^{2}+\frac{46\!\cdots\!17}{50\!\cdots\!82}a+\frac{14\!\cdots\!23}{50\!\cdots\!82}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  No
Index:  Not computed
Inessential primes:  $2$

Class group and class number

$C_{2}\times C_{10}\times C_{40}$, which has order $800$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $15$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{562131095808744}{13\!\cdots\!39}a^{30}-\frac{84\!\cdots\!60}{13\!\cdots\!39}a^{29}+\frac{94\!\cdots\!64}{13\!\cdots\!39}a^{28}-\frac{75\!\cdots\!36}{13\!\cdots\!39}a^{27}+\frac{50\!\cdots\!12}{13\!\cdots\!39}a^{26}-\frac{27\!\cdots\!72}{13\!\cdots\!39}a^{25}+\frac{26\!\cdots\!13}{26\!\cdots\!78}a^{24}-\frac{55\!\cdots\!38}{13\!\cdots\!39}a^{23}+\frac{20\!\cdots\!17}{13\!\cdots\!39}a^{22}-\frac{66\!\cdots\!38}{13\!\cdots\!39}a^{21}+\frac{39\!\cdots\!05}{26\!\cdots\!78}a^{20}-\frac{51\!\cdots\!18}{13\!\cdots\!39}a^{19}+\frac{12\!\cdots\!51}{13\!\cdots\!39}a^{18}-\frac{26\!\cdots\!94}{13\!\cdots\!39}a^{17}+\frac{10\!\cdots\!37}{26\!\cdots\!78}a^{16}-\frac{88\!\cdots\!70}{13\!\cdots\!39}a^{15}+\frac{13\!\cdots\!83}{13\!\cdots\!39}a^{14}-\frac{19\!\cdots\!66}{13\!\cdots\!39}a^{13}+\frac{47\!\cdots\!39}{26\!\cdots\!78}a^{12}-\frac{26\!\cdots\!94}{13\!\cdots\!39}a^{11}+\frac{62\!\cdots\!49}{326416871752079}a^{10}-\frac{21\!\cdots\!54}{13\!\cdots\!39}a^{9}+\frac{32\!\cdots\!73}{26\!\cdots\!78}a^{8}-\frac{10\!\cdots\!34}{13\!\cdots\!39}a^{7}+\frac{54\!\cdots\!93}{13\!\cdots\!39}a^{6}-\frac{23\!\cdots\!38}{13\!\cdots\!39}a^{5}+\frac{17\!\cdots\!01}{26\!\cdots\!78}a^{4}-\frac{23\!\cdots\!86}{13\!\cdots\!39}a^{3}+\frac{47\!\cdots\!31}{13\!\cdots\!39}a^{2}-\frac{60\!\cdots\!90}{13\!\cdots\!39}a+\frac{38\!\cdots\!54}{13\!\cdots\!39}$, $\frac{13\!\cdots\!02}{35\!\cdots\!13}a^{30}-\frac{68\!\cdots\!10}{11\!\cdots\!71}a^{29}+\frac{76\!\cdots\!89}{11\!\cdots\!71}a^{28}-\frac{18\!\cdots\!08}{35\!\cdots\!13}a^{27}+\frac{12\!\cdots\!74}{35\!\cdots\!13}a^{26}-\frac{67\!\cdots\!95}{35\!\cdots\!13}a^{25}+\frac{21\!\cdots\!73}{23\!\cdots\!42}a^{24}-\frac{13\!\cdots\!44}{35\!\cdots\!13}a^{23}+\frac{49\!\cdots\!87}{35\!\cdots\!13}a^{22}-\frac{54\!\cdots\!55}{11\!\cdots\!71}a^{21}+\frac{95\!\cdots\!27}{71\!\cdots\!26}a^{20}-\frac{12\!\cdots\!84}{35\!\cdots\!13}a^{19}+\frac{30\!\cdots\!65}{35\!\cdots\!13}a^{18}-\frac{64\!\cdots\!77}{35\!\cdots\!13}a^{17}+\frac{83\!\cdots\!85}{23\!\cdots\!42}a^{16}-\frac{21\!\cdots\!44}{35\!\cdots\!13}a^{15}+\frac{11\!\cdots\!35}{11\!\cdots\!71}a^{14}-\frac{47\!\cdots\!83}{35\!\cdots\!13}a^{13}+\frac{11\!\cdots\!01}{71\!\cdots\!26}a^{12}-\frac{64\!\cdots\!56}{35\!\cdots\!13}a^{11}+\frac{62\!\cdots\!87}{35\!\cdots\!13}a^{10}-\frac{17\!\cdots\!21}{11\!\cdots\!71}a^{9}+\frac{79\!\cdots\!33}{71\!\cdots\!26}a^{8}-\frac{83\!\cdots\!92}{11\!\cdots\!71}a^{7}+\frac{44\!\cdots\!07}{11\!\cdots\!71}a^{6}-\frac{19\!\cdots\!49}{11\!\cdots\!71}a^{5}+\frac{42\!\cdots\!25}{71\!\cdots\!26}a^{4}-\frac{58\!\cdots\!72}{35\!\cdots\!13}a^{3}+\frac{11\!\cdots\!56}{35\!\cdots\!13}a^{2}-\frac{15\!\cdots\!00}{35\!\cdots\!13}a+\frac{94\!\cdots\!49}{35\!\cdots\!13}$, $\frac{10\!\cdots\!91}{11\!\cdots\!71}a^{30}-\frac{15\!\cdots\!65}{11\!\cdots\!71}a^{29}+\frac{26\!\cdots\!11}{17\!\cdots\!86}a^{28}-\frac{42\!\cdots\!62}{35\!\cdots\!13}a^{27}+\frac{56\!\cdots\!81}{71\!\cdots\!26}a^{26}-\frac{15\!\cdots\!61}{35\!\cdots\!13}a^{25}+\frac{14\!\cdots\!93}{71\!\cdots\!26}a^{24}-\frac{31\!\cdots\!28}{35\!\cdots\!13}a^{23}+\frac{76\!\cdots\!51}{23\!\cdots\!42}a^{22}-\frac{37\!\cdots\!65}{35\!\cdots\!13}a^{21}+\frac{22\!\cdots\!13}{71\!\cdots\!26}a^{20}-\frac{98\!\cdots\!56}{11\!\cdots\!71}a^{19}+\frac{46\!\cdots\!11}{23\!\cdots\!42}a^{18}-\frac{15\!\cdots\!85}{35\!\cdots\!13}a^{17}+\frac{58\!\cdots\!77}{71\!\cdots\!26}a^{16}-\frac{50\!\cdots\!84}{35\!\cdots\!13}a^{15}+\frac{52\!\cdots\!73}{23\!\cdots\!42}a^{14}-\frac{10\!\cdots\!91}{35\!\cdots\!13}a^{13}+\frac{27\!\cdots\!39}{71\!\cdots\!26}a^{12}-\frac{50\!\cdots\!92}{11\!\cdots\!71}a^{11}+\frac{29\!\cdots\!51}{71\!\cdots\!26}a^{10}-\frac{41\!\cdots\!21}{11\!\cdots\!71}a^{9}+\frac{61\!\cdots\!37}{23\!\cdots\!42}a^{8}-\frac{19\!\cdots\!96}{11\!\cdots\!71}a^{7}+\frac{62\!\cdots\!01}{71\!\cdots\!26}a^{6}-\frac{13\!\cdots\!24}{35\!\cdots\!13}a^{5}+\frac{49\!\cdots\!80}{35\!\cdots\!13}a^{4}-\frac{45\!\cdots\!86}{11\!\cdots\!71}a^{3}+\frac{27\!\cdots\!36}{35\!\cdots\!13}a^{2}-\frac{35\!\cdots\!02}{35\!\cdots\!13}a+\frac{22\!\cdots\!21}{35\!\cdots\!13}$, $\frac{58\!\cdots\!93}{75\!\cdots\!73}a^{31}-\frac{18\!\cdots\!83}{15\!\cdots\!46}a^{30}+\frac{20\!\cdots\!45}{15\!\cdots\!46}a^{29}-\frac{56\!\cdots\!95}{50\!\cdots\!82}a^{28}+\frac{37\!\cdots\!03}{50\!\cdots\!82}a^{27}-\frac{20\!\cdots\!79}{50\!\cdots\!82}a^{26}+\frac{30\!\cdots\!31}{15\!\cdots\!46}a^{25}-\frac{64\!\cdots\!25}{75\!\cdots\!73}a^{24}+\frac{48\!\cdots\!77}{15\!\cdots\!46}a^{23}-\frac{16\!\cdots\!33}{15\!\cdots\!46}a^{22}+\frac{47\!\cdots\!39}{15\!\cdots\!46}a^{21}-\frac{12\!\cdots\!49}{15\!\cdots\!46}a^{20}+\frac{31\!\cdots\!83}{15\!\cdots\!46}a^{19}-\frac{11\!\cdots\!45}{25\!\cdots\!91}a^{18}+\frac{13\!\cdots\!01}{15\!\cdots\!46}a^{17}-\frac{11\!\cdots\!95}{75\!\cdots\!73}a^{16}+\frac{37\!\cdots\!19}{15\!\cdots\!46}a^{15}-\frac{53\!\cdots\!07}{15\!\cdots\!46}a^{14}+\frac{69\!\cdots\!71}{15\!\cdots\!46}a^{13}-\frac{26\!\cdots\!81}{50\!\cdots\!82}a^{12}+\frac{19\!\cdots\!71}{36\!\cdots\!06}a^{11}-\frac{11\!\cdots\!75}{25\!\cdots\!91}a^{10}+\frac{54\!\cdots\!53}{15\!\cdots\!46}a^{9}-\frac{18\!\cdots\!33}{75\!\cdots\!73}a^{8}+\frac{20\!\cdots\!07}{15\!\cdots\!46}a^{7}-\frac{50\!\cdots\!78}{75\!\cdots\!73}a^{6}+\frac{20\!\cdots\!32}{75\!\cdots\!73}a^{5}-\frac{64\!\cdots\!51}{75\!\cdots\!73}a^{4}+\frac{15\!\cdots\!81}{75\!\cdots\!73}a^{3}-\frac{56\!\cdots\!55}{15\!\cdots\!46}a^{2}+\frac{32\!\cdots\!21}{75\!\cdots\!73}a-\frac{60\!\cdots\!52}{25\!\cdots\!91}$, $\frac{26\!\cdots\!79}{75\!\cdots\!73}a^{31}-\frac{82\!\cdots\!49}{15\!\cdots\!46}a^{30}+\frac{31\!\cdots\!29}{50\!\cdots\!82}a^{29}-\frac{76\!\cdots\!59}{15\!\cdots\!46}a^{28}+\frac{17\!\cdots\!25}{50\!\cdots\!82}a^{27}-\frac{95\!\cdots\!69}{50\!\cdots\!82}a^{26}+\frac{13\!\cdots\!53}{15\!\cdots\!46}a^{25}-\frac{29\!\cdots\!40}{75\!\cdots\!73}a^{24}+\frac{73\!\cdots\!25}{50\!\cdots\!82}a^{23}-\frac{73\!\cdots\!35}{15\!\cdots\!46}a^{22}+\frac{22\!\cdots\!71}{15\!\cdots\!46}a^{21}-\frac{24\!\cdots\!18}{61\!\cdots\!51}a^{20}+\frac{14\!\cdots\!27}{15\!\cdots\!46}a^{19}-\frac{15\!\cdots\!02}{75\!\cdots\!73}a^{18}+\frac{31\!\cdots\!12}{75\!\cdots\!73}a^{17}-\frac{55\!\cdots\!92}{75\!\cdots\!73}a^{16}+\frac{43\!\cdots\!01}{36\!\cdots\!06}a^{15}-\frac{25\!\cdots\!93}{15\!\cdots\!46}a^{14}+\frac{33\!\cdots\!65}{15\!\cdots\!46}a^{13}-\frac{19\!\cdots\!86}{75\!\cdots\!73}a^{12}+\frac{39\!\cdots\!03}{15\!\cdots\!46}a^{11}-\frac{17\!\cdots\!02}{75\!\cdots\!73}a^{10}+\frac{13\!\cdots\!67}{75\!\cdots\!73}a^{9}-\frac{95\!\cdots\!26}{75\!\cdots\!73}a^{8}+\frac{37\!\cdots\!39}{50\!\cdots\!82}a^{7}-\frac{92\!\cdots\!80}{25\!\cdots\!91}a^{6}+\frac{11\!\cdots\!20}{75\!\cdots\!73}a^{5}-\frac{25\!\cdots\!05}{50\!\cdots\!82}a^{4}+\frac{32\!\cdots\!04}{25\!\cdots\!91}a^{3}-\frac{36\!\cdots\!83}{15\!\cdots\!46}a^{2}+\frac{14\!\cdots\!21}{50\!\cdots\!82}a-\frac{13\!\cdots\!28}{75\!\cdots\!73}$, $\frac{53\!\cdots\!02}{75\!\cdots\!73}a^{31}-\frac{82\!\cdots\!31}{75\!\cdots\!73}a^{30}+\frac{93\!\cdots\!47}{75\!\cdots\!73}a^{29}-\frac{25\!\cdots\!28}{25\!\cdots\!91}a^{28}+\frac{17\!\cdots\!66}{25\!\cdots\!91}a^{27}-\frac{19\!\cdots\!33}{50\!\cdots\!82}a^{26}+\frac{27\!\cdots\!39}{15\!\cdots\!46}a^{25}-\frac{58\!\cdots\!30}{75\!\cdots\!73}a^{24}+\frac{21\!\cdots\!29}{75\!\cdots\!73}a^{23}-\frac{14\!\cdots\!27}{15\!\cdots\!46}a^{22}+\frac{43\!\cdots\!27}{15\!\cdots\!46}a^{21}-\frac{58\!\cdots\!32}{75\!\cdots\!73}a^{20}+\frac{14\!\cdots\!87}{75\!\cdots\!73}a^{19}-\frac{20\!\cdots\!73}{50\!\cdots\!82}a^{18}+\frac{12\!\cdots\!87}{15\!\cdots\!46}a^{17}-\frac{10\!\cdots\!74}{75\!\cdots\!73}a^{16}+\frac{17\!\cdots\!07}{75\!\cdots\!73}a^{15}-\frac{50\!\cdots\!61}{15\!\cdots\!46}a^{14}+\frac{64\!\cdots\!29}{15\!\cdots\!46}a^{13}-\frac{12\!\cdots\!00}{25\!\cdots\!91}a^{12}+\frac{37\!\cdots\!05}{75\!\cdots\!73}a^{11}-\frac{22\!\cdots\!91}{50\!\cdots\!82}a^{10}+\frac{53\!\cdots\!81}{15\!\cdots\!46}a^{9}-\frac{44\!\cdots\!18}{18\!\cdots\!53}a^{8}+\frac{10\!\cdots\!19}{75\!\cdots\!73}a^{7}-\frac{10\!\cdots\!45}{15\!\cdots\!46}a^{6}+\frac{42\!\cdots\!57}{15\!\cdots\!46}a^{5}-\frac{68\!\cdots\!12}{75\!\cdots\!73}a^{4}+\frac{17\!\cdots\!16}{75\!\cdots\!73}a^{3}-\frac{31\!\cdots\!89}{75\!\cdots\!73}a^{2}+\frac{37\!\cdots\!68}{75\!\cdots\!73}a-\frac{72\!\cdots\!06}{25\!\cdots\!91}$, $\frac{45\!\cdots\!92}{75\!\cdots\!73}a^{31}-\frac{71\!\cdots\!26}{75\!\cdots\!73}a^{30}+\frac{80\!\cdots\!44}{75\!\cdots\!73}a^{29}-\frac{21\!\cdots\!51}{25\!\cdots\!91}a^{28}+\frac{14\!\cdots\!88}{25\!\cdots\!91}a^{27}-\frac{82\!\cdots\!42}{25\!\cdots\!91}a^{26}+\frac{11\!\cdots\!72}{75\!\cdots\!73}a^{25}-\frac{10\!\cdots\!45}{15\!\cdots\!46}a^{24}+\frac{18\!\cdots\!10}{75\!\cdots\!73}a^{23}-\frac{63\!\cdots\!45}{75\!\cdots\!73}a^{22}+\frac{18\!\cdots\!70}{75\!\cdots\!73}a^{21}-\frac{10\!\cdots\!45}{15\!\cdots\!46}a^{20}+\frac{12\!\cdots\!06}{75\!\cdots\!73}a^{19}-\frac{89\!\cdots\!29}{25\!\cdots\!91}a^{18}+\frac{53\!\cdots\!18}{75\!\cdots\!73}a^{17}-\frac{18\!\cdots\!69}{15\!\cdots\!46}a^{16}+\frac{15\!\cdots\!46}{75\!\cdots\!73}a^{15}-\frac{21\!\cdots\!59}{75\!\cdots\!73}a^{14}+\frac{28\!\cdots\!10}{75\!\cdots\!73}a^{13}-\frac{21\!\cdots\!45}{50\!\cdots\!82}a^{12}+\frac{32\!\cdots\!42}{75\!\cdots\!73}a^{11}-\frac{97\!\cdots\!91}{25\!\cdots\!91}a^{10}+\frac{22\!\cdots\!02}{75\!\cdots\!73}a^{9}-\frac{31\!\cdots\!47}{15\!\cdots\!46}a^{8}+\frac{90\!\cdots\!82}{75\!\cdots\!73}a^{7}-\frac{44\!\cdots\!47}{75\!\cdots\!73}a^{6}+\frac{18\!\cdots\!30}{75\!\cdots\!73}a^{5}-\frac{11\!\cdots\!03}{15\!\cdots\!46}a^{4}+\frac{14\!\cdots\!22}{75\!\cdots\!73}a^{3}-\frac{27\!\cdots\!93}{75\!\cdots\!73}a^{2}+\frac{32\!\cdots\!21}{75\!\cdots\!73}a-\frac{62\!\cdots\!25}{25\!\cdots\!91}$, $\frac{73\!\cdots\!51}{75\!\cdots\!73}a^{31}-\frac{22\!\cdots\!81}{15\!\cdots\!46}a^{30}+\frac{85\!\cdots\!03}{50\!\cdots\!82}a^{29}-\frac{10\!\cdots\!29}{75\!\cdots\!73}a^{28}+\frac{46\!\cdots\!43}{50\!\cdots\!82}a^{27}-\frac{26\!\cdots\!77}{50\!\cdots\!82}a^{26}+\frac{18\!\cdots\!59}{75\!\cdots\!73}a^{25}-\frac{80\!\cdots\!05}{75\!\cdots\!73}a^{24}+\frac{20\!\cdots\!95}{50\!\cdots\!82}a^{23}-\frac{10\!\cdots\!35}{75\!\cdots\!73}a^{22}+\frac{60\!\cdots\!45}{15\!\cdots\!46}a^{21}-\frac{26\!\cdots\!50}{25\!\cdots\!91}a^{20}+\frac{19\!\cdots\!33}{75\!\cdots\!73}a^{19}-\frac{85\!\cdots\!57}{15\!\cdots\!46}a^{18}+\frac{16\!\cdots\!13}{15\!\cdots\!46}a^{17}-\frac{15\!\cdots\!41}{75\!\cdots\!73}a^{16}+\frac{48\!\cdots\!77}{15\!\cdots\!46}a^{15}-\frac{34\!\cdots\!97}{75\!\cdots\!73}a^{14}+\frac{88\!\cdots\!45}{15\!\cdots\!46}a^{13}-\frac{50\!\cdots\!80}{75\!\cdots\!73}a^{12}+\frac{51\!\cdots\!91}{75\!\cdots\!73}a^{11}-\frac{92\!\cdots\!97}{15\!\cdots\!46}a^{10}+\frac{72\!\cdots\!37}{15\!\cdots\!46}a^{9}-\frac{24\!\cdots\!23}{75\!\cdots\!73}a^{8}+\frac{94\!\cdots\!69}{50\!\cdots\!82}a^{7}-\frac{45\!\cdots\!79}{50\!\cdots\!82}a^{6}+\frac{67\!\cdots\!04}{18\!\cdots\!53}a^{5}-\frac{73\!\cdots\!29}{61\!\cdots\!51}a^{4}+\frac{14\!\cdots\!79}{50\!\cdots\!82}a^{3}-\frac{40\!\cdots\!49}{75\!\cdots\!73}a^{2}+\frac{31\!\cdots\!73}{50\!\cdots\!82}a-\frac{26\!\cdots\!61}{75\!\cdots\!73}$, $\frac{10\!\cdots\!29}{75\!\cdots\!73}a^{31}-\frac{33\!\cdots\!99}{15\!\cdots\!46}a^{30}+\frac{38\!\cdots\!91}{15\!\cdots\!46}a^{29}-\frac{15\!\cdots\!46}{75\!\cdots\!73}a^{28}+\frac{69\!\cdots\!37}{50\!\cdots\!82}a^{27}-\frac{38\!\cdots\!13}{50\!\cdots\!82}a^{26}+\frac{28\!\cdots\!89}{75\!\cdots\!73}a^{25}-\frac{11\!\cdots\!45}{75\!\cdots\!73}a^{24}+\frac{89\!\cdots\!55}{15\!\cdots\!46}a^{23}-\frac{49\!\cdots\!90}{25\!\cdots\!91}a^{22}+\frac{89\!\cdots\!15}{15\!\cdots\!46}a^{21}-\frac{12\!\cdots\!80}{75\!\cdots\!73}a^{20}+\frac{29\!\cdots\!17}{75\!\cdots\!73}a^{19}-\frac{12\!\cdots\!73}{15\!\cdots\!46}a^{18}+\frac{25\!\cdots\!27}{15\!\cdots\!46}a^{17}-\frac{22\!\cdots\!79}{75\!\cdots\!73}a^{16}+\frac{23\!\cdots\!81}{50\!\cdots\!82}a^{15}-\frac{17\!\cdots\!26}{25\!\cdots\!91}a^{14}+\frac{43\!\cdots\!65}{50\!\cdots\!82}a^{13}-\frac{75\!\cdots\!90}{75\!\cdots\!73}a^{12}+\frac{25\!\cdots\!93}{25\!\cdots\!91}a^{11}-\frac{13\!\cdots\!53}{15\!\cdots\!46}a^{10}+\frac{26\!\cdots\!43}{36\!\cdots\!06}a^{9}-\frac{36\!\cdots\!77}{75\!\cdots\!73}a^{8}+\frac{41\!\cdots\!73}{15\!\cdots\!46}a^{7}-\frac{20\!\cdots\!73}{15\!\cdots\!46}a^{6}+\frac{41\!\cdots\!02}{75\!\cdots\!73}a^{5}-\frac{13\!\cdots\!98}{75\!\cdots\!73}a^{4}+\frac{66\!\cdots\!83}{15\!\cdots\!46}a^{3}-\frac{60\!\cdots\!91}{75\!\cdots\!73}a^{2}+\frac{14\!\cdots\!81}{15\!\cdots\!46}a-\frac{39\!\cdots\!31}{75\!\cdots\!73}$, $\frac{17\!\cdots\!10}{75\!\cdots\!73}a^{31}-\frac{27\!\cdots\!55}{75\!\cdots\!73}a^{30}+\frac{31\!\cdots\!52}{75\!\cdots\!73}a^{29}-\frac{16\!\cdots\!11}{50\!\cdots\!82}a^{28}+\frac{56\!\cdots\!71}{25\!\cdots\!91}a^{27}-\frac{63\!\cdots\!19}{50\!\cdots\!82}a^{26}+\frac{45\!\cdots\!10}{75\!\cdots\!73}a^{25}-\frac{19\!\cdots\!55}{75\!\cdots\!73}a^{24}+\frac{72\!\cdots\!00}{75\!\cdots\!73}a^{23}-\frac{24\!\cdots\!80}{75\!\cdots\!73}a^{22}+\frac{14\!\cdots\!59}{15\!\cdots\!46}a^{21}-\frac{38\!\cdots\!47}{15\!\cdots\!46}a^{20}+\frac{94\!\cdots\!31}{15\!\cdots\!46}a^{19}-\frac{83\!\cdots\!47}{61\!\cdots\!51}a^{18}+\frac{40\!\cdots\!97}{15\!\cdots\!46}a^{17}-\frac{72\!\cdots\!29}{15\!\cdots\!46}a^{16}+\frac{57\!\cdots\!07}{75\!\cdots\!73}a^{15}-\frac{82\!\cdots\!17}{75\!\cdots\!73}a^{14}+\frac{21\!\cdots\!99}{15\!\cdots\!46}a^{13}-\frac{80\!\cdots\!79}{50\!\cdots\!82}a^{12}+\frac{24\!\cdots\!33}{15\!\cdots\!46}a^{11}-\frac{36\!\cdots\!88}{25\!\cdots\!91}a^{10}+\frac{17\!\cdots\!59}{15\!\cdots\!46}a^{9}-\frac{11\!\cdots\!69}{15\!\cdots\!46}a^{8}+\frac{33\!\cdots\!23}{75\!\cdots\!73}a^{7}-\frac{16\!\cdots\!84}{75\!\cdots\!73}a^{6}+\frac{12\!\cdots\!01}{15\!\cdots\!46}a^{5}-\frac{20\!\cdots\!10}{75\!\cdots\!73}a^{4}+\frac{10\!\cdots\!05}{15\!\cdots\!46}a^{3}-\frac{18\!\cdots\!11}{15\!\cdots\!46}a^{2}+\frac{20\!\cdots\!31}{15\!\cdots\!46}a-\frac{37\!\cdots\!45}{50\!\cdots\!82}$, $\frac{56\!\cdots\!55}{23\!\cdots\!42}a^{30}-\frac{84\!\cdots\!25}{23\!\cdots\!42}a^{29}+\frac{95\!\cdots\!59}{23\!\cdots\!42}a^{28}-\frac{75\!\cdots\!01}{23\!\cdots\!42}a^{27}+\frac{12\!\cdots\!51}{58\!\cdots\!62}a^{26}-\frac{27\!\cdots\!77}{23\!\cdots\!42}a^{25}+\frac{13\!\cdots\!57}{23\!\cdots\!42}a^{24}-\frac{55\!\cdots\!69}{23\!\cdots\!42}a^{23}+\frac{10\!\cdots\!77}{11\!\cdots\!71}a^{22}-\frac{33\!\cdots\!01}{11\!\cdots\!71}a^{21}+\frac{98\!\cdots\!89}{11\!\cdots\!71}a^{20}-\frac{25\!\cdots\!02}{11\!\cdots\!71}a^{19}+\frac{12\!\cdots\!97}{23\!\cdots\!42}a^{18}-\frac{26\!\cdots\!59}{23\!\cdots\!42}a^{17}+\frac{25\!\cdots\!05}{11\!\cdots\!71}a^{16}-\frac{88\!\cdots\!13}{23\!\cdots\!42}a^{15}+\frac{68\!\cdots\!80}{11\!\cdots\!71}a^{14}-\frac{95\!\cdots\!88}{11\!\cdots\!71}a^{13}+\frac{11\!\cdots\!68}{11\!\cdots\!71}a^{12}-\frac{13\!\cdots\!83}{11\!\cdots\!71}a^{11}+\frac{25\!\cdots\!29}{23\!\cdots\!42}a^{10}-\frac{21\!\cdots\!13}{23\!\cdots\!42}a^{9}+\frac{78\!\cdots\!76}{11\!\cdots\!71}a^{8}-\frac{99\!\cdots\!27}{23\!\cdots\!42}a^{7}+\frac{52\!\cdots\!85}{23\!\cdots\!42}a^{6}-\frac{23\!\cdots\!49}{23\!\cdots\!42}a^{5}+\frac{81\!\cdots\!57}{23\!\cdots\!42}a^{4}-\frac{22\!\cdots\!83}{23\!\cdots\!42}a^{3}+\frac{21\!\cdots\!20}{11\!\cdots\!71}a^{2}-\frac{27\!\cdots\!98}{11\!\cdots\!71}a+\frac{34\!\cdots\!67}{23\!\cdots\!42}$, $\frac{11\!\cdots\!79}{75\!\cdots\!73}a^{31}-\frac{34\!\cdots\!49}{15\!\cdots\!46}a^{30}+\frac{39\!\cdots\!57}{15\!\cdots\!46}a^{29}-\frac{53\!\cdots\!54}{25\!\cdots\!91}a^{28}+\frac{71\!\cdots\!07}{50\!\cdots\!82}a^{27}-\frac{40\!\cdots\!11}{50\!\cdots\!82}a^{26}+\frac{29\!\cdots\!31}{75\!\cdots\!73}a^{25}-\frac{12\!\cdots\!40}{75\!\cdots\!73}a^{24}+\frac{92\!\cdots\!63}{15\!\cdots\!46}a^{23}-\frac{30\!\cdots\!87}{15\!\cdots\!46}a^{22}+\frac{46\!\cdots\!02}{75\!\cdots\!73}a^{21}-\frac{12\!\cdots\!95}{75\!\cdots\!73}a^{20}+\frac{60\!\cdots\!65}{15\!\cdots\!46}a^{19}-\frac{43\!\cdots\!87}{50\!\cdots\!82}a^{18}+\frac{13\!\cdots\!11}{75\!\cdots\!73}a^{17}-\frac{23\!\cdots\!28}{75\!\cdots\!73}a^{16}+\frac{74\!\cdots\!09}{15\!\cdots\!46}a^{15}-\frac{10\!\cdots\!25}{15\!\cdots\!46}a^{14}+\frac{68\!\cdots\!62}{75\!\cdots\!73}a^{13}-\frac{26\!\cdots\!48}{25\!\cdots\!91}a^{12}+\frac{16\!\cdots\!79}{15\!\cdots\!46}a^{11}-\frac{48\!\cdots\!97}{50\!\cdots\!82}a^{10}+\frac{56\!\cdots\!14}{75\!\cdots\!73}a^{9}-\frac{38\!\cdots\!61}{75\!\cdots\!73}a^{8}+\frac{45\!\cdots\!87}{15\!\cdots\!46}a^{7}-\frac{11\!\cdots\!51}{75\!\cdots\!73}a^{6}+\frac{91\!\cdots\!95}{15\!\cdots\!46}a^{5}-\frac{15\!\cdots\!55}{75\!\cdots\!73}a^{4}+\frac{38\!\cdots\!51}{75\!\cdots\!73}a^{3}-\frac{71\!\cdots\!49}{75\!\cdots\!73}a^{2}+\frac{86\!\cdots\!46}{75\!\cdots\!73}a-\frac{16\!\cdots\!96}{25\!\cdots\!91}$, $\frac{91\!\cdots\!29}{23\!\cdots\!42}a^{30}-\frac{13\!\cdots\!35}{23\!\cdots\!42}a^{29}+\frac{46\!\cdots\!43}{71\!\cdots\!26}a^{28}-\frac{37\!\cdots\!97}{71\!\cdots\!26}a^{27}+\frac{12\!\cdots\!25}{35\!\cdots\!13}a^{26}-\frac{67\!\cdots\!22}{35\!\cdots\!13}a^{25}+\frac{64\!\cdots\!57}{71\!\cdots\!26}a^{24}-\frac{26\!\cdots\!79}{71\!\cdots\!26}a^{23}+\frac{33\!\cdots\!91}{23\!\cdots\!42}a^{22}-\frac{32\!\cdots\!81}{71\!\cdots\!26}a^{21}+\frac{95\!\cdots\!07}{71\!\cdots\!26}a^{20}-\frac{42\!\cdots\!34}{11\!\cdots\!71}a^{19}+\frac{99\!\cdots\!93}{11\!\cdots\!71}a^{18}-\frac{12\!\cdots\!11}{71\!\cdots\!26}a^{17}+\frac{24\!\cdots\!41}{71\!\cdots\!26}a^{16}-\frac{42\!\cdots\!11}{71\!\cdots\!26}a^{15}+\frac{22\!\cdots\!25}{23\!\cdots\!42}a^{14}-\frac{91\!\cdots\!25}{71\!\cdots\!26}a^{13}+\frac{11\!\cdots\!87}{71\!\cdots\!26}a^{12}-\frac{20\!\cdots\!98}{11\!\cdots\!71}a^{11}+\frac{59\!\cdots\!93}{35\!\cdots\!13}a^{10}-\frac{33\!\cdots\!21}{23\!\cdots\!42}a^{9}+\frac{24\!\cdots\!17}{23\!\cdots\!42}a^{8}-\frac{15\!\cdots\!33}{23\!\cdots\!42}a^{7}+\frac{11\!\cdots\!22}{35\!\cdots\!13}a^{6}-\frac{51\!\cdots\!93}{35\!\cdots\!13}a^{5}+\frac{17\!\cdots\!43}{35\!\cdots\!13}a^{4}-\frac{30\!\cdots\!67}{23\!\cdots\!42}a^{3}+\frac{87\!\cdots\!29}{35\!\cdots\!13}a^{2}-\frac{21\!\cdots\!09}{71\!\cdots\!26}a+\frac{59\!\cdots\!81}{35\!\cdots\!13}$, $\frac{13\!\cdots\!35}{23\!\cdots\!42}a^{30}-\frac{20\!\cdots\!25}{23\!\cdots\!42}a^{29}+\frac{68\!\cdots\!57}{71\!\cdots\!26}a^{28}-\frac{54\!\cdots\!23}{71\!\cdots\!26}a^{27}+\frac{18\!\cdots\!22}{35\!\cdots\!13}a^{26}-\frac{99\!\cdots\!27}{35\!\cdots\!13}a^{25}+\frac{94\!\cdots\!13}{71\!\cdots\!26}a^{24}-\frac{39\!\cdots\!61}{71\!\cdots\!26}a^{23}+\frac{24\!\cdots\!70}{11\!\cdots\!71}a^{22}-\frac{23\!\cdots\!91}{35\!\cdots\!13}a^{21}+\frac{13\!\cdots\!01}{71\!\cdots\!26}a^{20}-\frac{12\!\cdots\!87}{23\!\cdots\!42}a^{19}+\frac{14\!\cdots\!49}{11\!\cdots\!71}a^{18}-\frac{93\!\cdots\!44}{35\!\cdots\!13}a^{17}+\frac{35\!\cdots\!11}{71\!\cdots\!26}a^{16}-\frac{61\!\cdots\!75}{71\!\cdots\!26}a^{15}+\frac{15\!\cdots\!34}{11\!\cdots\!71}a^{14}-\frac{65\!\cdots\!93}{35\!\cdots\!13}a^{13}+\frac{16\!\cdots\!41}{71\!\cdots\!26}a^{12}-\frac{58\!\cdots\!41}{23\!\cdots\!42}a^{11}+\frac{84\!\cdots\!65}{35\!\cdots\!13}a^{10}-\frac{23\!\cdots\!41}{11\!\cdots\!71}a^{9}+\frac{34\!\cdots\!87}{23\!\cdots\!42}a^{8}-\frac{21\!\cdots\!25}{23\!\cdots\!42}a^{7}+\frac{32\!\cdots\!49}{71\!\cdots\!26}a^{6}-\frac{14\!\cdots\!19}{71\!\cdots\!26}a^{5}+\frac{24\!\cdots\!84}{35\!\cdots\!13}a^{4}-\frac{21\!\cdots\!86}{11\!\cdots\!71}a^{3}+\frac{12\!\cdots\!27}{35\!\cdots\!13}a^{2}-\frac{15\!\cdots\!34}{35\!\cdots\!13}a+\frac{96\!\cdots\!58}{35\!\cdots\!13}$, $\frac{71\!\cdots\!71}{23\!\cdots\!42}a^{30}-\frac{10\!\cdots\!65}{23\!\cdots\!42}a^{29}+\frac{18\!\cdots\!70}{35\!\cdots\!13}a^{28}-\frac{28\!\cdots\!65}{71\!\cdots\!26}a^{27}+\frac{95\!\cdots\!71}{35\!\cdots\!13}a^{26}-\frac{10\!\cdots\!75}{71\!\cdots\!26}a^{25}+\frac{25\!\cdots\!31}{35\!\cdots\!13}a^{24}-\frac{20\!\cdots\!69}{71\!\cdots\!26}a^{23}+\frac{12\!\cdots\!67}{11\!\cdots\!71}a^{22}-\frac{25\!\cdots\!55}{71\!\cdots\!26}a^{21}+\frac{37\!\cdots\!81}{35\!\cdots\!13}a^{20}-\frac{65\!\cdots\!83}{23\!\cdots\!42}a^{19}+\frac{77\!\cdots\!56}{11\!\cdots\!71}a^{18}-\frac{10\!\cdots\!61}{71\!\cdots\!26}a^{17}+\frac{96\!\cdots\!07}{35\!\cdots\!13}a^{16}-\frac{33\!\cdots\!79}{71\!\cdots\!26}a^{15}+\frac{86\!\cdots\!89}{11\!\cdots\!71}a^{14}-\frac{72\!\cdots\!25}{71\!\cdots\!26}a^{13}+\frac{44\!\cdots\!75}{35\!\cdots\!13}a^{12}-\frac{32\!\cdots\!33}{23\!\cdots\!42}a^{11}+\frac{47\!\cdots\!68}{35\!\cdots\!13}a^{10}-\frac{26\!\cdots\!89}{23\!\cdots\!42}a^{9}+\frac{98\!\cdots\!15}{11\!\cdots\!71}a^{8}-\frac{12\!\cdots\!93}{23\!\cdots\!42}a^{7}+\frac{19\!\cdots\!19}{71\!\cdots\!26}a^{6}-\frac{10\!\cdots\!86}{87\!\cdots\!93}a^{5}+\frac{14\!\cdots\!30}{35\!\cdots\!13}a^{4}-\frac{13\!\cdots\!61}{11\!\cdots\!71}a^{3}+\frac{78\!\cdots\!57}{35\!\cdots\!13}a^{2}-\frac{24\!\cdots\!09}{87\!\cdots\!93}a+\frac{14\!\cdots\!96}{87\!\cdots\!93}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 35034437667347.797 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{16}\cdot 35034437667347.797 \cdot 800}{2\cdot\sqrt{156938077449417789520626992646455296000000000000000000000000}}\cr\approx \mathstrut & 0.208722309772526 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^32 - 16*x^31 + 184*x^30 - 1520*x^29 + 10332*x^28 - 58576*x^27 + 287336*x^26 - 1231568*x^25 + 4678388*x^24 - 15845336*x^23 + 48150868*x^22 - 131698920*x^21 + 325052602*x^20 - 724763816*x^19 + 1460398932*x^18 - 2657926856*x^17 + 4363838181*x^16 - 6450379432*x^15 + 8560966476*x^14 - 10166839032*x^13 + 10757915718*x^12 - 10090253496*x^11 + 8336518556*x^10 - 6020922808*x^9 + 3765841276*x^8 - 2015958408*x^7 + 909882172*x^6 - 339412280*x^5 + 101809462*x^4 - 23591480*x^3 + 3962076*x^2 - 429016*x + 22481)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^32 - 16*x^31 + 184*x^30 - 1520*x^29 + 10332*x^28 - 58576*x^27 + 287336*x^26 - 1231568*x^25 + 4678388*x^24 - 15845336*x^23 + 48150868*x^22 - 131698920*x^21 + 325052602*x^20 - 724763816*x^19 + 1460398932*x^18 - 2657926856*x^17 + 4363838181*x^16 - 6450379432*x^15 + 8560966476*x^14 - 10166839032*x^13 + 10757915718*x^12 - 10090253496*x^11 + 8336518556*x^10 - 6020922808*x^9 + 3765841276*x^8 - 2015958408*x^7 + 909882172*x^6 - 339412280*x^5 + 101809462*x^4 - 23591480*x^3 + 3962076*x^2 - 429016*x + 22481, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^32 - 16*x^31 + 184*x^30 - 1520*x^29 + 10332*x^28 - 58576*x^27 + 287336*x^26 - 1231568*x^25 + 4678388*x^24 - 15845336*x^23 + 48150868*x^22 - 131698920*x^21 + 325052602*x^20 - 724763816*x^19 + 1460398932*x^18 - 2657926856*x^17 + 4363838181*x^16 - 6450379432*x^15 + 8560966476*x^14 - 10166839032*x^13 + 10757915718*x^12 - 10090253496*x^11 + 8336518556*x^10 - 6020922808*x^9 + 3765841276*x^8 - 2015958408*x^7 + 909882172*x^6 - 339412280*x^5 + 101809462*x^4 - 23591480*x^3 + 3962076*x^2 - 429016*x + 22481);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^32 - 16*x^31 + 184*x^30 - 1520*x^29 + 10332*x^28 - 58576*x^27 + 287336*x^26 - 1231568*x^25 + 4678388*x^24 - 15845336*x^23 + 48150868*x^22 - 131698920*x^21 + 325052602*x^20 - 724763816*x^19 + 1460398932*x^18 - 2657926856*x^17 + 4363838181*x^16 - 6450379432*x^15 + 8560966476*x^14 - 10166839032*x^13 + 10757915718*x^12 - 10090253496*x^11 + 8336518556*x^10 - 6020922808*x^9 + 3765841276*x^8 - 2015958408*x^7 + 909882172*x^6 - 339412280*x^5 + 101809462*x^4 - 23591480*x^3 + 3962076*x^2 - 429016*x + 22481);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_4^2$ (as 32T36):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_4^2$
Character table for $C_2\times C_4^2$ is not computed

Intermediate fields

\(\Q(\sqrt{-35}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{2}, \sqrt{-35})\), 4.4.2508800.1, 4.0.2048.2, \(\Q(\sqrt{10}, \sqrt{-14})\), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{-7})\), 4.4.100352.1, 4.0.51200.2, \(\Q(\sqrt{-7}, \sqrt{10})\), \(\Q(\sqrt{5}, \sqrt{-14})\), 4.0.256000.4, 4.4.12544000.2, 4.0.256000.2, 4.4.12544000.1, 4.0.392000.2, 4.4.8000.1, 4.0.98000.1, \(\Q(\zeta_{20})^+\), 8.0.6294077440000.4, 8.0.6146560000.2, 8.0.6294077440000.1, 8.8.6294077440000.1, 8.0.6294077440000.3, 8.0.2621440000.1, 8.0.10070523904.1, 8.0.157351936000000.61, 8.0.157351936000000.59, 8.0.153664000000.4, 8.0.9604000000.2, 8.0.65536000000.1, 8.8.157351936000000.4, 8.0.2458624000000.6, \(\Q(\zeta_{40})^+\), 8.0.157351936000000.14, 8.0.157351936000000.37, 8.0.2458624000000.4, 8.0.2458624000000.2, 16.0.39615410820716953600000000.2, 16.0.24759631762948096000000000000.6, 16.0.6044831973376000000000000.2, 16.0.396154108207169536000000000000.5, 16.16.396154108207169536000000000000.1, 16.0.68719476736000000000000.2, 16.0.396154108207169536000000000000.13

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R ${\href{/padicField/3.4.0.1}{4} }^{8}$ R R ${\href{/padicField/11.4.0.1}{4} }^{8}$ ${\href{/padicField/13.4.0.1}{4} }^{8}$ ${\href{/padicField/17.4.0.1}{4} }^{8}$ ${\href{/padicField/19.4.0.1}{4} }^{8}$ ${\href{/padicField/23.4.0.1}{4} }^{8}$ ${\href{/padicField/29.4.0.1}{4} }^{8}$ ${\href{/padicField/31.2.0.1}{2} }^{16}$ ${\href{/padicField/37.4.0.1}{4} }^{8}$ ${\href{/padicField/41.2.0.1}{2} }^{16}$ ${\href{/padicField/43.4.0.1}{4} }^{8}$ ${\href{/padicField/47.4.0.1}{4} }^{8}$ ${\href{/padicField/53.4.0.1}{4} }^{8}$ ${\href{/padicField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $16$$8$$2$$48$
Deg $16$$8$$2$$48$
\(5\) Copy content Toggle raw display 5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
5.16.12.1$x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$$4$$4$$12$$C_4^2$$[\ ]_{4}^{4}$
\(7\) Copy content Toggle raw display 7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
7.8.4.1$x^{8} + 38 x^{6} + 8 x^{5} + 395 x^{4} - 72 x^{3} + 1026 x^{2} - 872 x + 401$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$