Normalized defining polynomial
\( x^{32} + 16 x^{30} + 176 x^{28} + 1664 x^{26} + 14591 x^{24} + 88112 x^{22} + 455328 x^{20} + 2102272 x^{18} + 8473857 x^{16} + 25593824 x^{14} + 70660512 x^{12} + 165613696 x^{10} + 264513791 x^{8} + 2076688 x^{6} + 16304 x^{4} + 128 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3} a^{16} - \frac{1}{3} a^{14} - \frac{1}{3} a^{12} - \frac{1}{3} a^{8} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{17} - \frac{1}{3} a^{15} - \frac{1}{3} a^{13} - \frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{93} a^{18} + \frac{1}{93} a^{16} - \frac{10}{31} a^{14} + \frac{1}{93} a^{12} + \frac{32}{93} a^{10} - \frac{5}{93} a^{8} + \frac{26}{93} a^{6} + \frac{26}{93} a^{4} - \frac{12}{31} a^{2} + \frac{26}{93}$, $\frac{1}{93} a^{19} + \frac{1}{93} a^{17} - \frac{10}{31} a^{15} + \frac{1}{93} a^{13} + \frac{32}{93} a^{11} - \frac{5}{93} a^{9} + \frac{26}{93} a^{7} + \frac{26}{93} a^{5} - \frac{12}{31} a^{3} + \frac{26}{93} a$, $\frac{1}{93} a^{20} - \frac{37}{93} a^{10} + \frac{5}{93}$, $\frac{1}{93} a^{21} - \frac{37}{93} a^{11} + \frac{5}{93} a$, $\frac{1}{93} a^{22} - \frac{37}{93} a^{12} + \frac{5}{93} a^{2}$, $\frac{1}{93} a^{23} - \frac{37}{93} a^{13} + \frac{5}{93} a^{3}$, $\frac{1}{93} a^{24} - \frac{37}{93} a^{14} + \frac{5}{93} a^{4}$, $\frac{1}{93} a^{25} - \frac{37}{93} a^{15} + \frac{5}{93} a^{5}$, $\frac{1}{66760355287546563} a^{26} - \frac{172721887392179}{66760355287546563} a^{24} + \frac{23017152462407}{66760355287546563} a^{22} - \frac{1839142177020}{717853282661791} a^{20} - \frac{125845884110966}{66760355287546563} a^{18} - \frac{5235897770280454}{66760355287546563} a^{16} - \frac{8803787873989466}{22253451762515521} a^{14} + \frac{8732779905152626}{22253451762515521} a^{12} - \frac{10147904688940186}{66760355287546563} a^{10} - \frac{7118268598229848}{66760355287546563} a^{8} - \frac{17118585194915102}{66760355287546563} a^{6} - \frac{29848450250669584}{66760355287546563} a^{4} - \frac{6278989835939942}{22253451762515521} a^{2} + \frac{30919609174006885}{66760355287546563}$, $\frac{1}{66760355287546563} a^{27} - \frac{172721887392179}{66760355287546563} a^{25} + \frac{23017152462407}{66760355287546563} a^{23} - \frac{1839142177020}{717853282661791} a^{21} - \frac{125845884110966}{66760355287546563} a^{19} - \frac{5235897770280454}{66760355287546563} a^{17} - \frac{8803787873989466}{22253451762515521} a^{15} + \frac{8732779905152626}{22253451762515521} a^{13} - \frac{10147904688940186}{66760355287546563} a^{11} - \frac{7118268598229848}{66760355287546563} a^{9} - \frac{17118585194915102}{66760355287546563} a^{7} - \frac{29848450250669584}{66760355287546563} a^{5} - \frac{6278989835939942}{22253451762515521} a^{3} + \frac{30919609174006885}{66760355287546563} a$, $\frac{1}{2069571013913943453} a^{28} + \frac{1}{2069571013913943453} a^{26} - \frac{6505439162493755}{2069571013913943453} a^{24} - \frac{3233118337864}{3455043428904747} a^{22} - \frac{127011925929511}{2069571013913943453} a^{20} + \frac{1703350628711584}{689857004637981151} a^{18} + \frac{303089952500312846}{2069571013913943453} a^{16} + \frac{251110944806779610}{689857004637981151} a^{14} - \frac{858996449948479670}{2069571013913943453} a^{12} - \frac{183096079549896622}{689857004637981151} a^{10} - \frac{967396697724619952}{2069571013913943453} a^{8} - \frac{878928924427783577}{2069571013913943453} a^{6} - \frac{477962746632348250}{2069571013913943453} a^{4} - \frac{1021002967383626981}{2069571013913943453} a^{2} - \frac{1021288458245044978}{2069571013913943453}$, $\frac{1}{2069571013913943453} a^{29} + \frac{1}{2069571013913943453} a^{27} - \frac{6505439162493755}{2069571013913943453} a^{25} - \frac{3233118337864}{3455043428904747} a^{23} - \frac{127011925929511}{2069571013913943453} a^{21} + \frac{1703350628711584}{689857004637981151} a^{19} + \frac{303089952500312846}{2069571013913943453} a^{17} + \frac{251110944806779610}{689857004637981151} a^{15} - \frac{858996449948479670}{2069571013913943453} a^{13} - \frac{183096079549896622}{689857004637981151} a^{11} - \frac{967396697724619952}{2069571013913943453} a^{9} - \frac{878928924427783577}{2069571013913943453} a^{7} - \frac{477962746632348250}{2069571013913943453} a^{5} - \frac{1021002967383626981}{2069571013913943453} a^{3} - \frac{1021288458245044978}{2069571013913943453} a$, $\frac{1}{2069571013913943453} a^{30} - \frac{4949579888216462}{2069571013913943453} a^{20} + \frac{318413444528890163}{689857004637981151} a^{10} - \frac{210320381790778352}{2069571013913943453}$, $\frac{1}{2069571013913943453} a^{31} - \frac{4949579888216462}{2069571013913943453} a^{21} + \frac{318413444528890163}{689857004637981151} a^{11} - \frac{210320381790778352}{2069571013913943453} a$
Class group and class number
Not computed
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5442706427752448}{689857004637981151} a^{30} - \frac{977986311236768}{7751202299303159} a^{28} - \frac{957235993172535040}{689857004637981151} a^{26} - \frac{9049179774441913856}{689857004637981151} a^{24} - \frac{79343774303775186944}{689857004637981151} a^{22} - \frac{478947322750503885920}{689857004637981151} a^{20} - \frac{2474470009298462551552}{689857004637981151} a^{18} - \frac{11422688253086898160351}{689857004637981151} a^{16} - \frac{46031324951385669545984}{689857004637981151} a^{14} - \frac{138939352302113658151840}{689857004637981151} a^{12} - \frac{383496144175713634388992}{689857004637981151} a^{10} - \frac{898382161939518956758016}{689857004637981151} a^{8} - \frac{1432628844683515600944096}{689857004637981151} a^{6} - \frac{55374137717097372768}{689857004637981151} a^{4} - \frac{434736175916726784}{689857004637981151} a^{2} - \frac{3401691517345280}{689857004637981151} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_4^2$ (as 32T36):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_4^2$ |
| Character table for $C_2\times C_4^2$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{8}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{32}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |