Properties

Label 32.0.15671213299...1216.1
Degree $32$
Signature $[0, 16]$
Discriminant $2^{96}\cdot 3^{16}\cdot 11^{16}$
Root discriminant $45.96$
Ramified primes $2, 3, 11$
Class number Not computed
Class group Not computed
Galois group $C_2^3\times C_4$ (as 32T34)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![43046721, 0, 0, 0, 0, 0, 0, 0, 741393, 0, 0, 0, 0, 0, 0, 0, 6208, 0, 0, 0, 0, 0, 0, 0, 113, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 113*x^24 + 6208*x^16 + 741393*x^8 + 43046721)
 
gp: K = bnfinit(x^32 + 113*x^24 + 6208*x^16 + 741393*x^8 + 43046721, 1)
 

Normalized defining polynomial

\( x^{32} + 113 x^{24} + 6208 x^{16} + 741393 x^{8} + 43046721 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(156712132992285501115475016655592096377279059345801216=2^{96}\cdot 3^{16}\cdot 11^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $45.96$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(528=2^{4}\cdot 3\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{528}(1,·)$, $\chi_{528}(131,·)$, $\chi_{528}(133,·)$, $\chi_{528}(263,·)$, $\chi_{528}(265,·)$, $\chi_{528}(395,·)$, $\chi_{528}(397,·)$, $\chi_{528}(527,·)$, $\chi_{528}(23,·)$, $\chi_{528}(155,·)$, $\chi_{528}(287,·)$, $\chi_{528}(419,·)$, $\chi_{528}(43,·)$, $\chi_{528}(175,·)$, $\chi_{528}(307,·)$, $\chi_{528}(439,·)$, $\chi_{528}(65,·)$, $\chi_{528}(67,·)$, $\chi_{528}(197,·)$, $\chi_{528}(199,·)$, $\chi_{528}(329,·)$, $\chi_{528}(331,·)$, $\chi_{528}(461,·)$, $\chi_{528}(463,·)$, $\chi_{528}(89,·)$, $\chi_{528}(221,·)$, $\chi_{528}(353,·)$, $\chi_{528}(485,·)$, $\chi_{528}(109,·)$, $\chi_{528}(241,·)$, $\chi_{528}(373,·)$, $\chi_{528}(505,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{35} a^{16} + \frac{4}{35} a^{8} + \frac{16}{35}$, $\frac{1}{105} a^{17} - \frac{31}{105} a^{9} + \frac{16}{105} a$, $\frac{1}{315} a^{18} - \frac{31}{315} a^{10} + \frac{16}{315} a^{2}$, $\frac{1}{945} a^{19} - \frac{346}{945} a^{11} - \frac{299}{945} a^{3}$, $\frac{1}{2835} a^{20} + \frac{599}{2835} a^{12} - \frac{1244}{2835} a^{4}$, $\frac{1}{8505} a^{21} + \frac{599}{8505} a^{13} + \frac{1591}{8505} a^{5}$, $\frac{1}{25515} a^{22} - \frac{7906}{25515} a^{14} - \frac{6914}{25515} a^{6}$, $\frac{1}{76545} a^{23} + \frac{17609}{76545} a^{15} - \frac{6914}{76545} a^{7}$, $\frac{1}{1425574080} a^{24} + \frac{929}{229635} a^{16} - \frac{98414}{229635} a^{8} + \frac{62193}{217280}$, $\frac{1}{4276722240} a^{25} + \frac{929}{688905} a^{17} - \frac{98414}{688905} a^{9} + \frac{279473}{651840} a$, $\frac{1}{12830166720} a^{26} + \frac{929}{2066715} a^{18} - \frac{98414}{2066715} a^{10} + \frac{931313}{1955520} a^{2}$, $\frac{1}{38490500160} a^{27} + \frac{929}{6200145} a^{19} + \frac{1968301}{6200145} a^{11} + \frac{931313}{5866560} a^{3}$, $\frac{1}{115471500480} a^{28} + \frac{929}{18600435} a^{20} + \frac{8168446}{18600435} a^{12} + \frac{931313}{17599680} a^{4}$, $\frac{1}{346414501440} a^{29} + \frac{929}{55801305} a^{21} - \frac{10431989}{55801305} a^{13} + \frac{931313}{52799040} a^{5}$, $\frac{1}{1039243504320} a^{30} + \frac{929}{167403915} a^{22} - \frac{66233294}{167403915} a^{14} + \frac{931313}{158397120} a^{6}$, $\frac{1}{3117730512960} a^{31} + \frac{929}{502211745} a^{23} - \frac{66233294}{502211745} a^{15} - \frac{157465807}{475191360} a^{7}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{28589}{38490500160} a^{27} + \frac{253}{6200145} a^{19} + \frac{15467}{6200145} a^{11} + \frac{61479}{217280} a^{3} \) (order $48$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3\times C_4$ (as 32T34):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^3\times C_4$
Character table for $C_2^3\times C_4$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-33}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{66}) \), \(\Q(\sqrt{-66}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(i, \sqrt{33})\), \(\Q(i, \sqrt{22})\), \(\Q(i, \sqrt{6})\), \(\Q(\sqrt{6}, \sqrt{22})\), \(\Q(\sqrt{-6}, \sqrt{-22})\), \(\Q(\sqrt{-6}, \sqrt{22})\), \(\Q(\sqrt{6}, \sqrt{-22})\), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{66})\), \(\Q(i, \sqrt{11})\), \(\Q(\zeta_{12})\), \(\Q(\sqrt{2}, \sqrt{33})\), \(\Q(\sqrt{-2}, \sqrt{33})\), \(\Q(\sqrt{3}, \sqrt{11})\), \(\Q(\sqrt{-3}, \sqrt{-11})\), \(\Q(\sqrt{2}, \sqrt{-33})\), \(\Q(\sqrt{-2}, \sqrt{-33})\), \(\Q(\sqrt{-3}, \sqrt{11})\), \(\Q(\sqrt{3}, \sqrt{-11})\), \(\Q(\sqrt{2}, \sqrt{11})\), \(\Q(\sqrt{-2}, \sqrt{-11})\), \(\Q(\sqrt{3}, \sqrt{22})\), \(\Q(\sqrt{-3}, \sqrt{22})\), \(\Q(\sqrt{2}, \sqrt{-11})\), \(\Q(\sqrt{-2}, \sqrt{11})\), \(\Q(\sqrt{-3}, \sqrt{-22})\), \(\Q(\sqrt{3}, \sqrt{-22})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{-2}, \sqrt{-3})\), \(\Q(\sqrt{6}, \sqrt{11})\), \(\Q(\sqrt{6}, \sqrt{-11})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{-2}, \sqrt{3})\), \(\Q(\sqrt{-6}, \sqrt{-11})\), \(\Q(\sqrt{-6}, \sqrt{11})\), 4.4.247808.1, 4.0.247808.2, 4.4.18432.1, 4.0.18432.2, \(\Q(\zeta_{16})^+\), 4.0.2048.2, 4.4.2230272.1, 4.0.2230272.1, 8.0.77720518656.1, 8.0.77720518656.8, 8.0.303595776.1, 8.0.959512576.1, 8.0.77720518656.9, \(\Q(\zeta_{24})\), 8.0.77720518656.3, 8.8.77720518656.1, 8.0.4857532416.2, 8.0.4857532416.1, 8.0.77720518656.4, 8.0.77720518656.7, 8.0.77720518656.2, 8.0.77720518656.5, 8.0.77720518656.6, 8.0.245635219456.2, 8.0.1358954496.4, \(\Q(\zeta_{16})\), 8.0.19896452775936.87, 8.8.4974113193984.1, 8.0.4974113193984.1, 8.8.4974113193984.2, 8.0.4974113193984.4, 8.0.19896452775936.40, 8.0.19896452775936.41, 8.0.19896452775936.81, 8.0.19896452775936.79, 8.8.245635219456.1, 8.0.245635219456.1, 8.8.19896452775936.3, 8.0.19896452775936.72, 8.0.61408804864.1, 8.0.61408804864.2, 8.0.4974113193984.3, 8.0.4974113193984.2, 8.8.19896452775936.2, 8.0.19896452775936.77, \(\Q(\zeta_{48})^+\), 8.0.1358954496.3, 8.0.4974113193984.6, 8.0.4974113193984.5, 8.0.339738624.1, 8.0.339738624.2, 16.0.6040479020157644046336.1, 16.0.395868833065051360220676096.5, 16.0.395868833065051360220676096.3, 16.0.60336661037197280935936.1, 16.0.395868833065051360220676096.9, 16.0.395868833065051360220676096.4, \(\Q(\zeta_{48})\), 16.16.395868833065051360220676096.1, 16.0.395868833065051360220676096.1, 16.0.24741802066565710013792256.1, 16.0.24741802066565710013792256.2, 16.0.395868833065051360220676096.8, 16.0.395868833065051360220676096.7, 16.0.395868833065051360220676096.6, 16.0.395868833065051360220676096.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/7.2.0.1}{2} }^{16}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$11$11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
11.8.4.1$x^{8} + 484 x^{4} - 1331 x^{2} + 58564$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$