Properties

Label 32.0.15635882837...6416.1
Degree $32$
Signature $[0, 16]$
Discriminant $2^{128}\cdot 11^{16}$
Root discriminant $53.07$
Ramified primes $2, 11$
Class number Not computed
Class group Not computed
Galois group $C_2^2\times C_8$ (as 32T37)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![43046721, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -353, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 - 353*x^16 + 43046721)
 
gp: K = bnfinit(x^32 - 353*x^16 + 43046721, 1)
 

Normalized defining polynomial

\( x^{32} - 353 x^{16} + 43046721 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(15635882837354065773928209678057089399596629842162876416=2^{128}\cdot 11^{16}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $53.07$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(352=2^{5}\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{352}(1,·)$, $\chi_{352}(131,·)$, $\chi_{352}(133,·)$, $\chi_{352}(263,·)$, $\chi_{352}(265,·)$, $\chi_{352}(21,·)$, $\chi_{352}(23,·)$, $\chi_{352}(153,·)$, $\chi_{352}(155,·)$, $\chi_{352}(285,·)$, $\chi_{352}(287,·)$, $\chi_{352}(43,·)$, $\chi_{352}(45,·)$, $\chi_{352}(175,·)$, $\chi_{352}(177,·)$, $\chi_{352}(307,·)$, $\chi_{352}(309,·)$, $\chi_{352}(65,·)$, $\chi_{352}(67,·)$, $\chi_{352}(197,·)$, $\chi_{352}(199,·)$, $\chi_{352}(329,·)$, $\chi_{352}(331,·)$, $\chi_{352}(87,·)$, $\chi_{352}(89,·)$, $\chi_{352}(219,·)$, $\chi_{352}(221,·)$, $\chi_{352}(351,·)$, $\chi_{352}(109,·)$, $\chi_{352}(111,·)$, $\chi_{352}(241,·)$, $\chi_{352}(243,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{3955} a^{16} + \frac{1801}{3955}$, $\frac{1}{11865} a^{17} + \frac{1801}{11865} a$, $\frac{1}{35595} a^{18} - \frac{10064}{35595} a^{2}$, $\frac{1}{106785} a^{19} - \frac{45659}{106785} a^{3}$, $\frac{1}{320355} a^{20} + \frac{61126}{320355} a^{4}$, $\frac{1}{961065} a^{21} + \frac{61126}{961065} a^{5}$, $\frac{1}{2883195} a^{22} - \frac{899939}{2883195} a^{6}$, $\frac{1}{8649585} a^{23} + \frac{1983256}{8649585} a^{7}$, $\frac{1}{25948755} a^{24} - \frac{6666329}{25948755} a^{8}$, $\frac{1}{77846265} a^{25} - \frac{32615084}{77846265} a^{9}$, $\frac{1}{233538795} a^{26} + \frac{45231181}{233538795} a^{10}$, $\frac{1}{700616385} a^{27} - \frac{188307614}{700616385} a^{11}$, $\frac{1}{2101849155} a^{28} + \frac{512308771}{2101849155} a^{12}$, $\frac{1}{6305547465} a^{29} - \frac{1589540384}{6305547465} a^{13}$, $\frac{1}{18916642395} a^{30} + \frac{4716007081}{18916642395} a^{14}$, $\frac{1}{56749927185} a^{31} + \frac{23632649476}{56749927185} a^{15}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{74}{77846265} a^{25} - \frac{282001}{77846265} a^{9} \) (order $32$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2\times C_8$ (as 32T37):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2^2\times C_8$
Character table for $C_2^2\times C_8$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{22}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{11}) \), \(\Q(i, \sqrt{22})\), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{11})\), \(\Q(\sqrt{2}, \sqrt{-11})\), \(\Q(\sqrt{-2}, \sqrt{11})\), \(\Q(\sqrt{2}, \sqrt{11})\), \(\Q(\sqrt{-2}, \sqrt{-11})\), \(\Q(\zeta_{16})^+\), 4.0.2048.2, 4.0.247808.2, 4.4.247808.1, 8.0.959512576.1, \(\Q(\zeta_{16})\), 8.0.245635219456.2, 8.0.61408804864.2, 8.0.61408804864.1, 8.8.245635219456.1, 8.0.245635219456.1, 8.8.31441308090368.1, 8.0.31441308090368.8, 8.0.2147483648.1, \(\Q(\zeta_{32})^+\), 16.0.60336661037197280935936.1, 16.0.3954223417733761003417501696.1, \(\Q(\zeta_{32})\), 16.0.988555854433440250854375424.2, 16.0.988555854433440250854375424.1, 16.16.3954223417733761003417501696.1, 16.0.3954223417733761003417501696.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{16}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
11Data not computed