Normalized defining polynomial
\( x^{32} + 9 x^{30} - 54 x^{28} + 1035 x^{26} + 16752 x^{24} + 486 x^{22} - 81535 x^{20} - 2988 x^{18} + 257994 x^{16} - 41841 x^{14} - 657960 x^{12} + 460998 x^{10} + 1297957 x^{8} - 167940 x^{6} - 81486 x^{4} - 8748 x^{2} + 6561 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(15313006310778859037593306549361889116160000000000000000=2^{32}\cdot 3^{16}\cdot 5^{16}\cdot 13^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(780=2^{2}\cdot 3\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{780}(1,·)$, $\chi_{780}(131,·)$, $\chi_{780}(389,·)$, $\chi_{780}(391,·)$, $\chi_{780}(649,·)$, $\chi_{780}(779,·)$, $\chi_{780}(109,·)$, $\chi_{780}(259,·)$, $\chi_{780}(151,·)$, $\chi_{780}(281,·)$, $\chi_{780}(541,·)$, $\chi_{780}(671,·)$, $\chi_{780}(161,·)$, $\chi_{780}(421,·)$, $\chi_{780}(551,·)$, $\chi_{780}(181,·)$, $\chi_{780}(521,·)$, $\chi_{780}(31,·)$, $\chi_{780}(701,·)$, $\chi_{780}(311,·)$, $\chi_{780}(79,·)$, $\chi_{780}(209,·)$, $\chi_{780}(469,·)$, $\chi_{780}(599,·)$, $\chi_{780}(571,·)$, $\chi_{780}(229,·)$, $\chi_{780}(359,·)$, $\chi_{780}(619,·)$, $\chi_{780}(749,·)$, $\chi_{780}(239,·)$, $\chi_{780}(499,·)$, $\chi_{780}(629,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{8} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{13} + \frac{1}{3} a$, $\frac{1}{9} a^{14} + \frac{1}{9} a^{2}$, $\frac{1}{9} a^{15} + \frac{1}{9} a^{3}$, $\frac{1}{9} a^{16} + \frac{1}{9} a^{4}$, $\frac{1}{9} a^{17} + \frac{1}{9} a^{5}$, $\frac{1}{9} a^{18} + \frac{1}{9} a^{6}$, $\frac{1}{27} a^{19} + \frac{1}{27} a^{15} + \frac{1}{9} a^{11} - \frac{2}{27} a^{7} + \frac{4}{27} a^{3}$, $\frac{1}{81} a^{20} + \frac{1}{27} a^{18} - \frac{2}{81} a^{16} + \frac{4}{27} a^{12} - \frac{38}{81} a^{8} - \frac{8}{27} a^{6} + \frac{37}{81} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{81} a^{21} - \frac{2}{81} a^{17} - \frac{1}{27} a^{15} + \frac{4}{27} a^{13} - \frac{1}{9} a^{11} - \frac{11}{81} a^{9} - \frac{2}{9} a^{7} + \frac{10}{81} a^{5} - \frac{13}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{81} a^{22} - \frac{2}{81} a^{18} - \frac{1}{27} a^{16} + \frac{1}{27} a^{14} - \frac{1}{9} a^{12} - \frac{11}{81} a^{10} - \frac{2}{9} a^{8} + \frac{10}{81} a^{6} - \frac{13}{27} a^{4} + \frac{2}{9} a^{2}$, $\frac{1}{81} a^{23} + \frac{1}{81} a^{19} - \frac{1}{27} a^{17} - \frac{1}{27} a^{15} - \frac{1}{9} a^{13} - \frac{2}{81} a^{11} + \frac{1}{9} a^{9} + \frac{4}{81} a^{7} + \frac{5}{27} a^{5} + \frac{7}{27} a^{3} + \frac{1}{3} a$, $\frac{1}{39528} a^{24} + \frac{14}{4941} a^{22} + \frac{10}{1647} a^{20} + \frac{1831}{39528} a^{18} + \frac{52}{4941} a^{16} - \frac{25}{1647} a^{14} + \frac{4693}{39528} a^{12} - \frac{55}{4941} a^{10} + \frac{368}{1647} a^{8} - \frac{9389}{39528} a^{6} + \frac{2002}{4941} a^{4} - \frac{16}{549} a^{2} + \frac{9}{488}$, $\frac{1}{39528} a^{25} + \frac{14}{4941} a^{23} + \frac{10}{1647} a^{21} + \frac{367}{39528} a^{19} + \frac{52}{4941} a^{17} - \frac{86}{1647} a^{15} + \frac{4693}{39528} a^{13} - \frac{604}{4941} a^{11} - \frac{181}{1647} a^{9} - \frac{6461}{39528} a^{7} - \frac{1292}{4941} a^{5} - \frac{292}{1647} a^{3} - \frac{461}{1464} a$, $\frac{1}{909144} a^{26} - \frac{1}{113643} a^{24} - \frac{430}{113643} a^{22} - \frac{1019}{303048} a^{20} - \frac{1838}{37881} a^{18} + \frac{1615}{113643} a^{16} - \frac{47747}{909144} a^{14} - \frac{692}{4941} a^{12} + \frac{12401}{113643} a^{10} - \frac{2117}{101016} a^{8} - \frac{2794}{37881} a^{6} - \frac{11573}{113643} a^{4} - \frac{28967}{101016} a^{2} + \frac{231}{1403}$, $\frac{1}{909144} a^{27} - \frac{1}{113643} a^{25} - \frac{430}{113643} a^{23} - \frac{1019}{303048} a^{21} - \frac{145}{12627} a^{19} + \frac{1615}{113643} a^{17} - \frac{14075}{909144} a^{15} - \frac{692}{4941} a^{13} - \frac{12853}{113643} a^{11} - \frac{2117}{101016} a^{9} + \frac{7027}{37881} a^{7} - \frac{11573}{113643} a^{5} - \frac{143021}{303048} a^{3} + \frac{231}{1403} a$, $\frac{1}{337716206020152} a^{28} - \frac{922453}{6621886392552} a^{26} - \frac{22876081}{2207295464184} a^{24} + \frac{290213136733}{112572068673384} a^{22} - \frac{1712650792361}{337716206020152} a^{20} - \frac{96377665261}{6621886392552} a^{18} - \frac{4635182352473}{112572068673384} a^{16} - \frac{5068015229849}{112572068673384} a^{14} - \frac{660344520311}{112572068673384} a^{12} + \frac{8513823396769}{112572068673384} a^{10} + \frac{39236314420315}{337716206020152} a^{8} + \frac{6667113129751}{112572068673384} a^{6} - \frac{141167762703823}{337716206020152} a^{4} + \frac{1696166633995}{12508007630376} a^{2} - \frac{505831034233}{4169335876792}$, $\frac{1}{1013148618060456} a^{29} - \frac{922453}{19865659177656} a^{27} - \frac{22876081}{6621886392552} a^{25} + \frac{290213136733}{337716206020152} a^{23} - \frac{1960662223051}{337716206020152} a^{21} - \frac{113877572279}{6621886392552} a^{19} + \frac{31957147587293}{1013148618060456} a^{17} - \frac{5068015229849}{337716206020152} a^{15} - \frac{1926409780831}{37524022891128} a^{13} + \frac{46037846287897}{337716206020152} a^{11} - \frac{46681709427247}{337716206020152} a^{9} + \frac{38356615308781}{112572068673384} a^{7} - \frac{257909167253999}{1013148618060456} a^{5} - \frac{274796582533}{4169335876792} a^{3} - \frac{4675166911025}{12508007630376} a$, $\frac{1}{7270028621558369240836385736} a^{30} - \frac{44011887247}{201945239487732478912121826} a^{28} - \frac{13958620644597056875}{47516526938289995038146312} a^{26} - \frac{172588691882473637857}{29917813257441848727721752} a^{24} + \frac{1361604246634652285106883}{605835718463197436736365478} a^{22} + \frac{2518454170114916902478171}{807780957950929915648487304} a^{20} + \frac{188321121097863101569531607}{7270028621558369240836385736} a^{18} - \frac{1667149686575425275289015}{67315079829244159637373942} a^{16} + \frac{737538478080281028380833}{47516526938289995038146312} a^{14} - \frac{3695625733179345342132781}{29917813257441848727721752} a^{12} + \frac{94749127390120564697197489}{605835718463197436736365478} a^{10} - \frac{698770996048511197138987}{3828345772279288699755864} a^{8} - \frac{2268465969798517888204197413}{7270028621558369240836385736} a^{6} - \frac{332942653872505722525521}{957086443069822174938966} a^{4} - \frac{12884616728906068260335633}{29917813257441848727721752} a^{2} - \frac{293374328675542354172609}{4986302209573641454620292}$, $\frac{1}{21810085864675107722509157208} a^{31} - \frac{44011887247}{605835718463197436736365478} a^{29} + \frac{532034815334510759}{1979855289095416459922763} a^{27} + \frac{29103377586421674941719}{2423342873852789746945461912} a^{25} + \frac{9981900760762141485521365}{1817507155389592310209096434} a^{23} - \frac{1672210886182435041410}{11219179971540693272895657} a^{21} + \frac{988985409203014558686713}{357542391224182093811625528} a^{19} - \frac{41567082753709021127413}{67315079829244159637373942} a^{17} - \frac{840028101053809774183445}{17818697601858748139304867} a^{15} + \frac{38731041173379568301006467}{2423342873852789746945461912} a^{13} - \frac{136847373205575485601878789}{1817507155389592310209096434} a^{11} + \frac{25039088624768970988856}{478543221534911087469483} a^{9} - \frac{783391993152253946306446847}{21810085864675107722509157208} a^{7} - \frac{1190886856700360097922223}{2871259329209466524816898} a^{5} + \frac{554892206220041580801312}{1246575552393410363655073} a^{3} + \frac{1424457371107801168785101}{3739726657180231090965219} a$
Class group and class number
$C_{4}\times C_{4}\times C_{4}\times C_{8}$, which has order $512$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1367645762110748577687761}{21810085864675107722509157208} a^{31} + \frac{1381519372606879953772115}{2423342873852789746945461912} a^{29} - \frac{19781767967991696979321}{5939565867286249379768289} a^{27} + \frac{19577542128860555195224216}{302917859231598718368182739} a^{25} + \frac{7678364801871102437426988503}{7270028621558369240836385736} a^{23} + \frac{4397810500245328283889932}{33657539914622079818686971} a^{21} - \frac{27483652350736842388046939447}{5452521466168776930627289302} a^{19} - \frac{1588538495920772833826991745}{2423342873852789746945461912} a^{17} + \frac{16555505472968769369725944}{1048158682462279302312051} a^{15} - \frac{342789380767086702464549339}{302917859231598718368182739} a^{13} - \frac{293251675671964968831332282677}{7270028621558369240836385736} a^{11} + \frac{109263706388780141211276578}{4390113901907227802437431} a^{9} + \frac{441681142725295572787271225699}{5452521466168776930627289302} a^{7} - \frac{8516201874508435755251927}{9972604419147282909240584} a^{5} - \frac{456495571123242955499106}{1246575552393410363655073} a^{3} - \frac{70095015600809590825515559}{29917813257441848727721752} a \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 8672607098800.753 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |