Normalized defining polynomial
\( x^{32} - 189 x^{28} + 17931 x^{24} - 168350 x^{20} + 703575 x^{16} - 1493310 x^{12} + 1488226 x^{8} - 174636 x^{4} + 6561 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1527848341996520753686611488433972088668160000000000000000=2^{64}\cdot 5^{16}\cdot 13^{24}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $61.24$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(520=2^{3}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{520}(1,·)$, $\chi_{520}(259,·)$, $\chi_{520}(261,·)$, $\chi_{520}(129,·)$, $\chi_{520}(131,·)$, $\chi_{520}(21,·)$, $\chi_{520}(151,·)$, $\chi_{520}(281,·)$, $\chi_{520}(411,·)$, $\chi_{520}(389,·)$, $\chi_{520}(161,·)$, $\chi_{520}(291,·)$, $\chi_{520}(421,·)$, $\chi_{520}(391,·)$, $\chi_{520}(51,·)$, $\chi_{520}(181,·)$, $\chi_{520}(311,·)$, $\chi_{520}(441,·)$, $\chi_{520}(31,·)$, $\chi_{520}(79,·)$, $\chi_{520}(209,·)$, $\chi_{520}(339,·)$, $\chi_{520}(469,·)$, $\chi_{520}(99,·)$, $\chi_{520}(229,·)$, $\chi_{520}(359,·)$, $\chi_{520}(519,·)$, $\chi_{520}(489,·)$, $\chi_{520}(109,·)$, $\chi_{520}(239,·)$, $\chi_{520}(369,·)$, $\chi_{520}(499,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} - \frac{1}{3} a^{4}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{6} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{7} - \frac{2}{9} a^{3}$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{8} - \frac{2}{9} a^{4}$, $\frac{1}{9} a^{13} + \frac{1}{9} a^{9} + \frac{1}{9} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{14} - \frac{1}{9} a^{2}$, $\frac{1}{27} a^{15} - \frac{1}{9} a^{7} + \frac{2}{27} a^{3}$, $\frac{1}{27} a^{16} - \frac{1}{9} a^{8} + \frac{2}{27} a^{4}$, $\frac{1}{27} a^{17} - \frac{1}{9} a^{9} + \frac{2}{27} a^{5}$, $\frac{1}{27} a^{18} - \frac{4}{27} a^{6} + \frac{1}{9} a^{2}$, $\frac{1}{27} a^{19} - \frac{4}{27} a^{7} + \frac{1}{9} a^{3}$, $\frac{1}{243} a^{20} - \frac{4}{243} a^{16} + \frac{2}{81} a^{12} - \frac{4}{243} a^{8} - \frac{80}{243} a^{4} - \frac{1}{3}$, $\frac{1}{243} a^{21} - \frac{4}{243} a^{17} + \frac{2}{81} a^{13} - \frac{4}{243} a^{9} + \frac{1}{243} a^{5} + \frac{1}{3} a$, $\frac{1}{243} a^{22} - \frac{4}{243} a^{18} + \frac{2}{81} a^{14} - \frac{4}{243} a^{10} + \frac{1}{243} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{243} a^{23} - \frac{4}{243} a^{19} - \frac{1}{81} a^{15} - \frac{4}{243} a^{11} + \frac{28}{243} a^{7} + \frac{7}{27} a^{3}$, $\frac{1}{2205711} a^{24} - \frac{94}{2205711} a^{20} - \frac{8674}{735237} a^{16} - \frac{83515}{2205711} a^{12} - \frac{203354}{2205711} a^{8} - \frac{9722}{27231} a^{4} + \frac{113}{9077}$, $\frac{1}{6617133} a^{25} + \frac{8983}{6617133} a^{21} + \frac{101056}{6617133} a^{17} - \frac{274132}{6617133} a^{13} + \frac{495575}{6617133} a^{9} + \frac{38525}{6617133} a^{5} - \frac{8738}{81693} a$, $\frac{1}{6617133} a^{26} + \frac{8983}{6617133} a^{22} + \frac{101056}{6617133} a^{18} - \frac{274132}{6617133} a^{14} - \frac{239662}{6617133} a^{10} - \frac{696712}{6617133} a^{6} + \frac{9416}{81693} a^{2}$, $\frac{1}{6617133} a^{27} + \frac{8983}{6617133} a^{23} + \frac{101056}{6617133} a^{19} - \frac{29053}{6617133} a^{15} - \frac{239662}{6617133} a^{11} + \frac{773762}{6617133} a^{7} - \frac{35291}{245079} a^{3}$, $\frac{1}{8918045113761801} a^{28} + \frac{444268288}{8918045113761801} a^{24} + \frac{252635895178}{146197460881341} a^{20} - \frac{88223751749314}{8918045113761801} a^{16} + \frac{410657025481028}{8918045113761801} a^{12} + \frac{1246647587033}{146197460881341} a^{8} + \frac{338691142811930}{990893901529089} a^{4} - \frac{3257400031968}{12233258043569}$, $\frac{1}{8918045113761801} a^{29} + \frac{444268288}{8918045113761801} a^{25} + \frac{252635895178}{146197460881341} a^{21} - \frac{88223751749314}{8918045113761801} a^{17} + \frac{410657025481028}{8918045113761801} a^{13} + \frac{1246647587033}{146197460881341} a^{9} + \frac{8393175635567}{990893901529089} a^{5} + \frac{2461057947665}{36699774130707} a$, $\frac{1}{26754135341285403} a^{30} - \frac{10384507}{307518797026269} a^{26} + \frac{622614901}{5041291754529} a^{22} + \frac{15040584488420}{922556391078807} a^{18} - \frac{13812384939158}{307518797026269} a^{14} + \frac{261906306788}{5041291754529} a^{10} - \frac{124471034017735}{922556391078807} a^{6} - \frac{54239993589433}{330297967176363} a^{2}$, $\frac{1}{80262406023856209} a^{31} - \frac{61069300}{990893901529089} a^{27} + \frac{421223074825}{438592382644023} a^{23} - \frac{412806036722000}{80262406023856209} a^{19} + \frac{63030923139688}{8918045113761801} a^{15} - \frac{22004545526020}{438592382644023} a^{11} + \frac{2290039960169065}{80262406023856209} a^{7} - \frac{275809270017424}{990893901529089} a^{3}$
Class group and class number
$C_{4}\times C_{408}$, which has order $1632$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{8419316}{235422642321} a^{29} + \frac{42931787272}{6356411342667} a^{25} - \frac{4070042260232}{6356411342667} a^{21} + \frac{37693335580879}{6356411342667} a^{17} - \frac{154304754445609}{6356411342667} a^{13} + \frac{317030159966315}{6356411342667} a^{9} - \frac{295313021679784}{6356411342667} a^{5} + \frac{103132977463}{78474214107} a \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26450919227224.95 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3\times C_4$ (as 32T34):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2^3\times C_4$ |
| Character table for $C_2^3\times C_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{16}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/17.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{16}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |