Normalized defining polynomial
\( x^{32} + 17 x^{30} + 170 x^{28} + 1139 x^{26} + 5712 x^{24} + 21930 x^{22} + 66453 x^{20} + 158576 x^{18} + 300254 x^{16} + 442459 x^{14} + 505172 x^{12} + 427142 x^{10} + 265013 x^{8} + 107508 x^{6} + 29478 x^{4} + 3468 x^{2} + 289 \)
Invariants
| Degree: | $32$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 16]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(1514842838499144573219529960757824409341479409296605184=2^{32}\cdot 3^{16}\cdot 17^{30}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $49.33$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(204=2^{2}\cdot 3\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{204}(1,·)$, $\chi_{204}(131,·)$, $\chi_{204}(7,·)$, $\chi_{204}(137,·)$, $\chi_{204}(11,·)$, $\chi_{204}(13,·)$, $\chi_{204}(143,·)$, $\chi_{204}(145,·)$, $\chi_{204}(149,·)$, $\chi_{204}(23,·)$, $\chi_{204}(25,·)$, $\chi_{204}(157,·)$, $\chi_{204}(31,·)$, $\chi_{204}(161,·)$, $\chi_{204}(163,·)$, $\chi_{204}(167,·)$, $\chi_{204}(169,·)$, $\chi_{204}(71,·)$, $\chi_{204}(175,·)$, $\chi_{204}(49,·)$, $\chi_{204}(53,·)$, $\chi_{204}(185,·)$, $\chi_{204}(139,·)$, $\chi_{204}(199,·)$, $\chi_{204}(77,·)$, $\chi_{204}(79,·)$, $\chi_{204}(89,·)$, $\chi_{204}(91,·)$, $\chi_{204}(95,·)$, $\chi_{204}(101,·)$, $\chi_{204}(107,·)$, $\chi_{204}(121,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{17} a^{16}$, $\frac{1}{17} a^{17}$, $\frac{1}{17} a^{18}$, $\frac{1}{17} a^{19}$, $\frac{1}{17} a^{20}$, $\frac{1}{17} a^{21}$, $\frac{1}{17} a^{22}$, $\frac{1}{17} a^{23}$, $\frac{1}{68} a^{24} - \frac{1}{68} a^{18} + \frac{1}{4} a^{12} - \frac{1}{4} a^{6} + \frac{1}{4}$, $\frac{1}{68} a^{25} - \frac{1}{68} a^{19} + \frac{1}{4} a^{13} - \frac{1}{4} a^{7} + \frac{1}{4} a$, $\frac{1}{68} a^{26} - \frac{1}{68} a^{20} + \frac{1}{4} a^{14} - \frac{1}{4} a^{8} + \frac{1}{4} a^{2}$, $\frac{1}{68} a^{27} - \frac{1}{68} a^{21} + \frac{1}{4} a^{15} - \frac{1}{4} a^{9} + \frac{1}{4} a^{3}$, $\frac{1}{39236} a^{28} - \frac{69}{19618} a^{26} + \frac{49}{39236} a^{24} - \frac{49}{2308} a^{22} + \frac{263}{19618} a^{20} - \frac{241}{39236} a^{18} + \frac{709}{39236} a^{16} + \frac{323}{1154} a^{14} - \frac{1147}{2308} a^{12} - \frac{661}{2308} a^{10} + \frac{29}{1154} a^{8} - \frac{837}{2308} a^{6} + \frac{333}{2308} a^{4} - \frac{143}{1154} a^{2} + \frac{773}{2308}$, $\frac{1}{39236} a^{29} - \frac{69}{19618} a^{27} + \frac{49}{39236} a^{25} - \frac{49}{2308} a^{23} + \frac{263}{19618} a^{21} - \frac{241}{39236} a^{19} + \frac{709}{39236} a^{17} + \frac{323}{1154} a^{15} - \frac{1147}{2308} a^{13} - \frac{661}{2308} a^{11} + \frac{29}{1154} a^{9} - \frac{837}{2308} a^{7} + \frac{333}{2308} a^{5} - \frac{143}{1154} a^{3} + \frac{773}{2308} a$, $\frac{1}{976112616152365964} a^{30} + \frac{7076152584669}{976112616152365964} a^{28} - \frac{780854399320071}{488056308076182982} a^{26} + \frac{5826370154790201}{976112616152365964} a^{24} + \frac{9260584561972939}{976112616152365964} a^{22} - \frac{7638797047769335}{488056308076182982} a^{20} - \frac{14472775595430977}{976112616152365964} a^{18} - \frac{10414764239601135}{976112616152365964} a^{16} - \frac{3310315638259731}{28709194592716646} a^{14} - \frac{24963391630336419}{57418389185433292} a^{12} - \frac{616762865249953}{57418389185433292} a^{10} - \frac{4194758450254935}{28709194592716646} a^{8} + \frac{6276853258721775}{57418389185433292} a^{6} - \frac{20643837479258047}{57418389185433292} a^{4} - \frac{4858269251464175}{28709194592716646} a^{2} + \frac{9313273874788873}{28709194592716646}$, $\frac{1}{976112616152365964} a^{31} + \frac{7076152584669}{976112616152365964} a^{29} - \frac{780854399320071}{488056308076182982} a^{27} + \frac{5826370154790201}{976112616152365964} a^{25} + \frac{9260584561972939}{976112616152365964} a^{23} - \frac{7638797047769335}{488056308076182982} a^{21} - \frac{14472775595430977}{976112616152365964} a^{19} - \frac{10414764239601135}{976112616152365964} a^{17} - \frac{3310315638259731}{28709194592716646} a^{15} - \frac{24963391630336419}{57418389185433292} a^{13} - \frac{616762865249953}{57418389185433292} a^{11} - \frac{4194758450254935}{28709194592716646} a^{9} + \frac{6276853258721775}{57418389185433292} a^{7} - \frac{20643837479258047}{57418389185433292} a^{5} - \frac{4858269251464175}{28709194592716646} a^{3} + \frac{9313273874788873}{28709194592716646} a$
Class group and class number
$C_{2}\times C_{1930}$, which has order $3860$ (assuming GRH)
Unit group
| Rank: | $15$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{8862376563653}{14354597296358323} a^{30} + \frac{5062829345284895}{488056308076182982} a^{28} + \frac{100477630908866135}{976112616152365964} a^{26} + \frac{667049026921297383}{976112616152365964} a^{24} + \frac{1657686115715772759}{488056308076182982} a^{22} + \frac{12592757530253509517}{976112616152365964} a^{20} + \frac{37715115643349410873}{976112616152365964} a^{18} + \frac{44345503854995443385}{488056308076182982} a^{16} + \frac{9712431125187831519}{57418389185433292} a^{14} + \frac{13992055396039302215}{57418389185433292} a^{12} + \frac{7774928198934191755}{28709194592716646} a^{10} + \frac{12626852064601754869}{57418389185433292} a^{8} + \frac{7491285242414234013}{57418389185433292} a^{6} + \frac{1387611017329210503}{28709194592716646} a^{4} + \frac{773969177576190803}{57418389185433292} a^{2} + \frac{90198638894591567}{57418389185433292} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73876734347.55115 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{16}$ (as 32T32):
| An abelian group of order 32 |
| The 32 conjugacy class representatives for $C_2\times C_{16}$ |
| Character table for $C_2\times C_{16}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $16^{2}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | $16^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ | |
| 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ | |
| 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ | |
| 3 | Data not computed | ||||||
| 17 | Data not computed | ||||||