Properties

Label 32.0.15148428384...5184.1
Degree $32$
Signature $[0, 16]$
Discriminant $2^{32}\cdot 3^{16}\cdot 17^{30}$
Root discriminant $49.33$
Ramified primes $2, 3, 17$
Class number $6176$ (GRH)
Class group $[2, 3088]$ (GRH)
Galois group $C_2\times C_{16}$ (as 32T32)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 288, 0, 6648, 0, 59244, 0, 270216, 0, 729146, 0, 1269578, 0, 1508868, 0, 1269578, 0, 773397, 0, 344863, 0, 112607, 0, 26623, 0, 4436, 0, 494, 0, 33, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^32 + 33*x^30 + 494*x^28 + 4436*x^26 + 26623*x^24 + 112607*x^22 + 344863*x^20 + 773397*x^18 + 1269578*x^16 + 1508868*x^14 + 1269578*x^12 + 729146*x^10 + 270216*x^8 + 59244*x^6 + 6648*x^4 + 288*x^2 + 1)
 
gp: K = bnfinit(x^32 + 33*x^30 + 494*x^28 + 4436*x^26 + 26623*x^24 + 112607*x^22 + 344863*x^20 + 773397*x^18 + 1269578*x^16 + 1508868*x^14 + 1269578*x^12 + 729146*x^10 + 270216*x^8 + 59244*x^6 + 6648*x^4 + 288*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{32} + 33 x^{30} + 494 x^{28} + 4436 x^{26} + 26623 x^{24} + 112607 x^{22} + 344863 x^{20} + 773397 x^{18} + 1269578 x^{16} + 1508868 x^{14} + 1269578 x^{12} + 729146 x^{10} + 270216 x^{8} + 59244 x^{6} + 6648 x^{4} + 288 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $32$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 16]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(1514842838499144573219529960757824409341479409296605184=2^{32}\cdot 3^{16}\cdot 17^{30}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $49.33$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(204=2^{2}\cdot 3\cdot 17\)
Dirichlet character group:    $\lbrace$$\chi_{204}(1,·)$, $\chi_{204}(131,·)$, $\chi_{204}(5,·)$, $\chi_{204}(11,·)$, $\chi_{204}(13,·)$, $\chi_{204}(143,·)$, $\chi_{204}(145,·)$, $\chi_{204}(19,·)$, $\chi_{204}(23,·)$, $\chi_{204}(25,·)$, $\chi_{204}(157,·)$, $\chi_{204}(167,·)$, $\chi_{204}(41,·)$, $\chi_{204}(43,·)$, $\chi_{204}(173,·)$, $\chi_{204}(29,·)$, $\chi_{204}(49,·)$, $\chi_{204}(55,·)$, $\chi_{204}(151,·)$, $\chi_{204}(65,·)$, $\chi_{204}(67,·)$, $\chi_{204}(197,·)$, $\chi_{204}(71,·)$, $\chi_{204}(95,·)$, $\chi_{204}(103,·)$, $\chi_{204}(107,·)$, $\chi_{204}(113,·)$, $\chi_{204}(115,·)$, $\chi_{204}(169,·)$, $\chi_{204}(121,·)$, $\chi_{204}(125,·)$, $\chi_{204}(127,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{3088}$, which has order $6176$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $15$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( a^{17} + 17 a^{15} + 119 a^{13} + 442 a^{11} + 935 a^{9} + 1122 a^{7} + 714 a^{5} + 204 a^{3} + 17 a \) (order $4$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 19955290291.92932 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{16}$ (as 32T32):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 32
The 32 conjugacy class representatives for $C_2\times C_{16}$
Character table for $C_2\times C_{16}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-17}) \), \(\Q(i, \sqrt{17})\), 4.4.4913.1, 4.0.78608.1, 8.0.6179217664.1, \(\Q(\zeta_{17})^+\), 8.0.105046700288.1, 16.0.11034809241396899282944.1, \(\Q(\zeta_{51})^+\), 16.0.1230789518357685955321724928.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R $16^{2}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{8}$ R ${\href{/LocalNumberField/19.8.0.1}{8} }^{4}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ $16^{2}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{8}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{4}$ ${\href{/LocalNumberField/59.8.0.1}{8} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
17Data not computed